J. A. McCubbin, O. V. Krokhin / Tetrahedron Letters 51 (2010) 2447–2449
2449
HO OH
B
try, and the Natural Sciences and Engineering Research Council of
Canada (O.V.K) is gratefully acknowledged.
Ar3
R1
Ar3-H
-H+
Ar2B(OH)2
Ar1
H
-Ar2B(OH)3
Ar2
Ar1
OH
O
Ar1
R2
R2
R1
Ar1
R2
R2
Supplementary data
R1
R1
12
11
2
Supplementary data associated with this article can be found, in
Scheme 2. Proposed mechanism.
References and notes
1. (a) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed.
2005, 44, 3913; (b) Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem. 2004,
47, 3897; (c) Wainwright, M.; Phoenix, D. A.; Burrow, S. M.; Waring, J. J.
Chemother. 1999, 11, 61; (d) Al-Qawasmeh, R. A.; Lee, Y.; Cao, M.-Y.; Gu, X.;
Vassilakos, A.; Wright, J. A.; Young, A. Bioorg. Med. Chem. Lett. 2004, 14, 347.
2. (a) Muthyala, R. In Chemistry and Applications of Leuco Dyes; Katrizky, A. R.,
Sabongi, G. J., Eds.; Plenum: New York, 1997; (b) Duxbury, D. F. Chem. Rev.
1993, 93, 381; (c) Aldagin, R. In Photochroism: Molecules and Systems; DOrr, H.,
Bouas-Laurent, H., Eds.; Elsevier: London, 1990; (d) Baker, L. A.; Sun, L.; Crooks,
R. M. Bull. Korean Chem. Soc. 2002, 23, 647; (e) Skabara, P. J.; Serebryako, I. M.;
Perepichka, I. F. Synth. Met. 1999, 102, 1336; (f) Khan, M. S.; Al-Mandhary, M. R.
A.; Al-Suti, M. K.; Ahrens, B.; Mahon, M. F.; Male, L.; Raithby, P. R.; Boothby, C.
E.; Kohler, A. Dalton Trans. 2003, 74; (g) Jacob, J.; Oldridge, L.; Zhang, J. Y.; Gaal,
M.; List, E. J. W.; Grimsdale, A. C.; Mullen, K. Curr. Appl. Phys. 2004, 4, 339.
3. (a) Hoffmann, M.; Hampel, N.; Kanzian, T.; Mayr, H. Angew. Chem., Int. Ed. 2004,
43, 5402; (b) Shanmuga, P.; Varma, L. Indian J. Chem., Sect. B 2001, 40, 1258; (c)
Zhang, Z.-H.; Yang, F.; Li, T.-S.; Fu, C.-G. Synth. Commun. 1997, 27, 3823; (d)
Pindur, U.; Flo, C. J. Heterocycl. Chem. 1989, 26, 1563; (e) Casiraghi, G.; Casnati,
G.; Cornia, M.; Sartori, G.; Ungaro, R. J. Chem. Soc., Perkin Trans. 1 1974, 2077; (f)
Snyder, H. R.; Konecky, M. S. J. Am. Chem. Soc. 1958, 80, 4388; (g) Ungnade, H.
E.; Crandall, E. W. J. Am. Chem. Soc. 1949, 71, 2209.
4. For a review, see: (a) Muthyala, R.; Katrizky, A. R.; Lan, X. Dyes Pigment 1994,
25, 303; For selected examples, see: (b) Esquivias, J.; Arrayas, R. G.; Carretero, J.
C. Angew. Chem., Int. Ed. 2006, 118, 645; (c) Das, S. K.; Shagufta; Panda, G.
Tetrahedron Lett. 2005, 46, 3097; (d) Burmester, A.; Stegmann, H. B. Synthesis
1981, 125; (e) Pratt, E. F.; Green, L. Q. J. Am. Chem. Soc. 1953, 75, 275; (f)
Katrizky, A. R.; Toader, D. J. Org. Chem. 1997, 62, 4137; (g) Katrizky, A. R.; Gupta,
V.; Garot, C.; Stevens, C. V.; Gordeev, M. F. Heterocycles 1994, 38; (h) Katrizky, A.
R.; Lan, X.; Lam, J. M. Chem. Ber. 1991, 124, 1809.
5. See, for example: (a) Zimmermann, T. J.; Muller, T. J. J. Synthesis 2002, 1157; (b)
Wilson, L. M.; Griffin, A. C. J. Mater. Chem. 1993, 3, 991; (c) Sengupta, S.;
Sadhukhan, S. K. Tetrahedron Lett. 1998, 39, 1237; (d) Sengupta, S.; Sadhukhan,
S. K. Tetrahedron Lett. 1999, 40, 9157; (e) Mongin, O.; Gossauer, A. Tetrahedron
1997, 53, 6835; (f) Lambert, C.; Gaschler, W.; Nöll, G.; Weber, M.; Schmälzlin,
E.; Bräuchle, C.; Meerholz, K. J. Chem. Soc., Perkin Trans. 2 2001, 964; (g) Zhao,
H.; Tanjutco, C.; Thayumanavan, S. Tetrahedron Lett. 2001, 42, 4421; (h)
Robinson, M. R.; Wang, S.; Bazan, G. C.; Cao, Y. Adv. Mater. 2000, 12, 1701.
6. (a) Noji, M.; Ohno, T.; Fuji, K.; Futaba, N.; Tajima, H.; Ishii, K. J. Org. Chem. 2003,
68, 9340; (b) Yi, W.-B.; Cai, C. J. Fluorine Chem. 2005, 126, 831; (c) Sun, H.-B.; Li,
B.; Chen, S.; Li, J.; Hua, R. Tetrahedron 2007, 63, 10185; (d) Vicennati, P.; Cozzi,
P. G. Eur. J. Org. Chem. 2007, 2248; (e) Cozzi, P. G.; Zoli, L. Green Chem. 2007, 9,
1292; (f) Muhlthau, F.; Stadler, F. D.; Goeppert, A.; Olah, G. A.; Surya Prakash, G.
K.; Bach, T. J. Am. Chem. Soc. 2006, 128, 9668; (g) Stadler, D.; Bach, T. Angew.
Chem., Int. Ed. 2008, 47, 7557; (h) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan,
W. Adv. Synth. Catal. 2006, 348, 1033. See also Ref. 1a.
phenyl ring affords insufficient stabilization of the carbocation
intermediate. However, increasing the electron density by incorpo-
ration of a free phenol in 2f allows the reaction with indole 4 to
proceed smoothly to completion to afford 4f in good yield (entry
4). Naphthyl derivative 2g was also an effective electrophile, and
afforded 6g in high yield upon reaction with 6 (entry 5). We attri-
bute the success of this substrate (cf. 2e, entry 3) to the increased
electron density of naphthalene relative to benzene. Electron-rich
benzylic alcohols, including methoxy phenol 2h, phenol 2i, and
methoxy benzene 2j all performed well in the reaction with 8 (en-
tries 6–8). They afforded furan derivatives 8h, 8i, and 8j, respec-
tively, in good yields. The success of the reaction in the presence
of free phenols (entries 4, 6, and 7) demonstrates the further
advantage that protecting groups are not required.
We next tested brominated derivatives 2k and 2l in combina-
tion with 10 and 8, respectively, with some success (entries 9
and 10). High yield of the coupled product 10k and moderate yield
of 8l were obtained. We attribute the somewhat reduced yields in
these cases (cf. entries 6 and 7) to a decrease in electron density
due to the electronegative bromine atoms. These products have
the advantage of allowing for further derivatization of the aryl bro-
mides. Similarly to phenols, free amines are well tolerated under
these conditions (entry 11).
Finally, we tested the coupling of tertiary alcohols 2n and 2o with
8, to afford 8n and 8o, respectively, in modest yields, with some for-
mation of the elimination products observed (entries 12 and 13).
Our results for this reaction are consistent with the mechanistic
proposals reported previously for a similar process.12 The de-
creased reactivity (or lack thereof) of alcohol substrates leading
to relatively unstabilized carbocations suggests that the formation
of such intermediates is integral to the reaction. We therefore pro-
pose
a Friedel–Crafts mechanism, involving SN1 substitution
(Scheme 2). Complexation of the arylboronic acid to benzylic alco-
hol 2 results in the formation of ate species 11. This enhances the
leaving group ability of the hydroxide, resulting in a heterolytic
cleavage to form resonance-stabilized carbocation 12. This under-
goes nucleophilic attack by the aromatic nucleophile, followed by a
conventional Friedel–Crafts mechanism to afford the product. The
resulting arylborate is in equilibrium with the arylboronic acid and
water, which is removed in situ by the molecular sieves, regener-
ating the active catalytic species.
In summary, we have developed a mild, organocatalyzed meth-
od for the synthesis of a variety of tetra- and tri-aryl methanes. The
reaction is also amenable to the preparation of electron-rich diary-
lmethanes with potential medicinal applications. The process is
highly atom economical, employing a recoverable catalyst and pro-
ducing water as the only byproduct. Preliminary results are consis-
tent with those of an SN1/Friedel–Crafts mechanism. Extension of
the scope of this reaction, as well as detailed mechanistic studies
is ongoing in our laboratory.
7. (a) Sarca, V. D.; Laali, K. K. Green Chem. 2006, 8, 615; (b) Shirakawa, S.; Kobayashi,
S. Org. Lett. 2007, 9, 311; (c) Chung, J. Y. L.; Mancheno, D.; Dormer, P. G.;
Variankaval, N.; Ball, R. G.; Tsou, N. N. Org. Lett. 2008, 10, 3037; (d) Rueping, M.;
Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew. Chem., Int. Ed. 2008, 47, 593.
8. (a) Choudhury, J.; Podder, S.; Roy, S. J. Am. Chem. Soc. 2005, 127, 6162; (b)
Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 238; (c) Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Adv. Synth. Catal.
2006, 348, 691.
9. (a)Metal Catalyzed Cross Coupling Reactions; de Meijere, A., Diederich, F., Eds.;
Wiley-VCH: Weinheim, Germany, 2004; Dedicated special issue of 30 years of
cross-coupling: (b) Tamao, K.; Hiyama, T.; Negishi, E.-i. J. Organomet. Chem.
2002, 1, 653; (c) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2004, 43, 1871.
10. Boronic Acids—Preparation and Applications in Organic Synthesis and Medicine;
Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2005.
11. See for example: (a) Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew. Chem. Int. Ed.
2008, 47, 2876; (b) Tale, R. H.; Adude, R. N. Tetrahedron Lett. 2006, 47, 7263; (c)
Rao, G.; Philipp, M. J. Org. Chem. 1991, 56, 1505; (d) Debache, A.; Boumold, B.;
Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2006, 47,
5697; (e) Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Synlett
2008, 509; (f) Letsinger, R. L.; MacLean, D. B. J. Am. Chem. Soc. 1963, 85, 2230; (g)
Maki, T.; Ishihara, H.; Yamamoto, H. Synlett 2004, 1355; (h) Wipf, P.; Wang, X. J.
Comb. Chem. 2002, 4, 656; (i) Tale, R. H.; Patil, K. M.; Dapurkar, S. E. Tetrahedron
Lett. 2003, 3427; (j) Tale, R. H.; Patil, K. M. Tetrahedron Lett. 2002, 43, 9715.
12. McCubbin, J. A.; Hosseini, H.; Krokhin, O. V. J. Org. Chem. 2010, 75, 959.
13. In the related reaction of electron-rich aromatics with allylic alcohols, toluene
and dichloroethane were found to be equally suitable at room temperature. See
Ref. 12.
Acknowledgments
We thank the University of Winnipeg for financial support of
this work in the form of a Major Research Grant (J.A.M). Additional
support from The University of Winnipeg, Department of Chemis-