2000
S. P. Tanis et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1994–2000
6. Schnute, M. E.; Cudahy, M. M.; Brideau, R. J.; Homa, F. L.; Hopkins, T. A.;
Knechtel, M. L.; Oien, N. L.; Pitts, T. W.; Poorman, R. A.; Wathen, M. W.; Wieber,
J. L. J. Med. Chem. 2005, 48, 5794.
19. A representative procedure for the conversion of 12–13 follows: Iodide 12
(45.66 g, 0.1 mol) was added to a three neck 1 L round-bottomed flask, and it
was covered with anhydrous DMF (0.4 L). The flask was equipped with a
magnetic stir bar, a 125 mL pressure equalized addition funnel, a medium sized
cold finger condenser, and a coarse frit gas dispersion tube. The set up was
swept with a flow of argon (addition funnel inlet, cold finger condenser outlet)
while i-Pr2NEt (27.14 g, 0.21 mol, 36.6 mL) was added to the reaction flask. The
addition funnel was charged with anhydrous DMF (0.1 L) and PhSH (12.12 g,
0.11 mol, 1.1 equiv, 11.3 mL). The argon flow is replaced by a flow of argon
through a 20 gauge syringe needle, bubbling through the DMF/PhSH mixture in
the addition funnel. The CO flow (vigorous through the gas dispersion tube)
into the mixture in the round-bottom flask is initiated and the vessel is
lowered into a preheated 90 °C oil bath. Bubbling (CO and Ar) is continued for
10 min while the solution warms and 12 gradually dissolves. During this
period the cold finger condenser is charged with a dry ice/i-PrOH mixture. At
the end of the 10 min period the addition funnel was capped with a serum cap
and the argon inlet was switched to a 20 gauge 1.5 inch syringe needle placed
into the open outlet of the cold finger condenser. With a vigorous flow of CO
bubbling through the DMF solution of 12 and i-Pr2NEt, the center joint of the
3 N RB flask was unstoppered and Pd(PPh3)4 (0.86 g, 0.75 mmol) was added in
one portion. The solution became lemon yellow as the Pd(PPh3)4 dissolved.
After complete dissolution of Pd(PPh3)4 the PhSH/DMF was added over 75 min.
As the addition progressed the reaction mixture turned orange, then red, and
finally after ca. 90% of the PhSH had been added, the solution became red–
black. HPLC analysis after 75 min indicated that the reaction was complete
(17 min gradient, 5:95 CH3CN/H2O[H3PO4–NaH2PO4 buffer] to 95:5): 12
tR = 7.29 min; 13 tR = 10.87 min). The mixture was cooled to room
temperature and the DMF was removed on a cold finger rotary evaporator
(vacuum pump pressure) with warming in a 40 °C oil bath to afford a red–black
solid. The crude material was triturated with CH2Cl2–pentane (0.5 L, 3:1) to
furnish a red–black solution and a cream colored solid. The mixture was chilled
in an ice-water bath for 30 min, then the solid was isolated by filtration. The
solid was rinsed with CH2Cl2–pentane (3 Â 100 mL, 3:1) to provide 28.92 g of
the thioester 13 after drying in a vacuum oven (70 °C). The triturate was
concentrated in vacuo to give a sticky red–black solid that was triturated with
CH2Cl2–pentane (0.25 L, 3:1) to give a red–black solution and a cream colored
solid. Isolation of the solid by filtration, washing with CH2Cl2–pentane
(3 Â 75 mL, 3:1) and drying in vacuo (70 °C) gave an additional 9.21 g of
thioester 13. The lots were combined to realize 38.13 g (82%) of 13. A portion
was recrystallized from CH2Cl2–MeOH to yield 13 as fine, cream colored
needles. Mp 222–223 °C.
7. (a) Schnute, M. E.; Anderson, D. J.; Brideau, R. J.; Ciske, F. L.; Collier, S. A.;
Cudahy, M. M.; Eggen, M.; Genin, M. J.; Hopkins, T. A.; Judge, T. M.; Kim, E. J.;
Knechtel, M. L.; Nair, S. K.; Nieman, J. A.; Oien, N. L.; Scott, A.; Tanis, S. P.;
Vaillancourt, V. A.; Wathen, M. W.; Wieber, J. L. Bioorg. Med. Chem. Lett. 2007,
17, 3349; (b) Schnute, M. E.; Brideau, R. J.; Collier, S. A.; Cudahy, M. M.; Hopkins,
T. A.; Knechtel, M. L.; Oien, N. L.; Sackett, R. S.; Scott, A.; Stephan, M. L.; Wathen,
M. W.; Wieber, J. L. Bioorg. Med. Chem. Lett. 2008, 18, 3856; For syntheses of
chiral aryl-aminoethanols see: (c) Tanis, S. P.; Evans, B. R.; Nieman, J. A.; Parker,
T. T.; Taylor, W. D.; Heasley, S. E.; Herrinton, P. M.; Perrault, W. R.; Hohler, R. A.;
Dolak, L. A.; Hester, M. R.; Seest, E. P. Tetrahedron: Asymmetry 2006, 17, 2154.
8. Vaillancourt, V.A.; Staley, S.; Huang, A.; Nugent, R.A.; Chen, K.; Nair, S.K.;
Nieman, J.A.; Strohbach, J.W. Preparation of pyrroloquinolones as viral DNA
polymerase inhibitors for antiviral agents, PCT Int. Appl. 2002.; Hartline, C. B.;
Harden, E. A.; Williams-Aziz, S. L.; Kushner, N. L.; Brideau, R. J.; Kern, E. R.
Antiviral Res. 2005, 65, 97; Dorow, R. L.; Herrinton, P. M.; Hohler, R. A.; Maloney,
M. T.; Mauragis, M. A.; McGhee, W. E.; Moeslein, J. A.; Strohbach, J. W.; Veley,
M. F. Org. Process Res. Dev. 2006, 10, 493.
9. Nair, S. K.; Nieman, J. A.; Schultz, B. L.; Heasley, S. E.; Vaillancourt, V. A.;
Brammer, C.; Hopkins, T. A.; Knechtel, M. L.; Oien, N. L.; Wieber, J. L.;
Stephanski, K. J.; Wathan, M. W., in preparation.
10. (a) Mali, R. S.; Talele, M. I.; Koshy, M. A. Synthesis 1987, 630; (b) Ino, A.;
Murabayashi, A. Tetrahedron 1999, 55, 10271; (c) Ohba, M.; Nishimura, Y.; Kato,
M.; Fujii, T. Tetrahedron 1999, 55, 4999.
11. Strohbach, J.W.; Tanis, S.P.; Moon, M.W.; Perrault, W.R. PCT Int. Appl. 2003, WO
2003053972 A1 20030703.
12. (a) Atkins, R. J.; Breen, G. F.; Crawford, L. P.; Grinter, T. J.; Harris, M. A.; Hayes, J.
F.; Moores, C. J.; Saunders, R. N.; Share, A. C.; Walsgrove, T. C.; Wicks, C. Org.
Process Res. Dev. 1997, 1, 185; (b) Kametani, T.; Kigasawa, K.; Hiiragi, M.;
Wakisaka, K.; Kusama, O.; Sugi, H.; Kawaski, K. J. Heterocycl. Chem. 1977, 14,
1175; (c) Willard, A. K.; Smith, R. L.; Cragoe, E. J., Jr. J. Org. Chem. 1981, 46, 3846;
(d) Leysen, D. C.; Zhang, M. Q.; Haemers, A.; Bollaert, W. Pharmazie 1991, 46,
557.
13. Jinbo, Y.; Kondo, H.; Inoue, Y.; Taguchi, M.; Tsujishita, H.; Kotera, Y.; Sakamoto,
F.; Tsukamoto, G. J. Med. Chem. 1993, 36, 2621; Jinbo, Y.; Taguchi, M.; Inoue, Y.;
Kondo, H.; Miyasaka, T.; Tsujishita, H.; Sakamoto, F.; Tsukamoto, G. J. Med.
Chem. 1993, 36, 3148.
14. Brooks, D. W.; Kellogg, R. P. Tetrahedron Lett. 1982, 23, 4991.
15. Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050.
16. Akita, H.; Yamada, H.; Matsukura, H.; Nakata, T.; Oishi, T. Tetrahedron Lett.
1988, 29, 6449.
17. Hinz, W.; Just, G. Can. J. Chem. 1987, 65, 1503; Connors, K. A.; Bender, M. L. J.
Org. Chem. 1961, 26, 2498.
20. Meyers, A. I.; Collington, E. W. J. Org. Chem. 1971, 36, 3044.
21. Ryckmans, T.; Edwards, M. P.; Horne, V. A.; Correia, A. M.; Owen, D. R.; Thompson,
L. R.; Tran, I.; Tutt, M. F.; Young, T. Bioorg. Med. Chem. Lett. 2009, 19, 4406.
22. Thermodynamic solubility was measured by the method of Hageman et al.:
Guo, J.; Elzinga, P. A.; Hageman, M. J.; Herron, J. N. J. Pharm. Sci. 2008, 97, 1427.
18. Cao, H.; McNamee, L.; Alper, H. J. Org. Chem. 2008, 73, 3530.