Table 3 Experimental data for synthesis of fused-1,2,4-triazole (8)
Entry Aldohydrazone (1) N-Heterocycles (7)
t/h 8, Yield (%)
2.5 8a, 81
1
2
3
4
5
6
p-MeO–C6H4(1f)
p-MeO–C6H4(1f)
p-Cl–C6H4(1b)
b-naphthyl(1a)
p-Br–C6H4 (1d)
p-CHO-C5H4N(7a)
p-COCH3-C5H4N(7b) 2.5 8b, 79
p-CHO-C5H4N(7a)
quinoline(7c)
p-CHO-C5H4N(7a)
2.0 8c, 78
2.0 8d, 80
2.5 8e, 78
2.5 8f, 74
m-NO2–C6H4(1e) p-CHO-C5H4N(7a)
PhI to the fused triazoline intermediate IV. To regain the
aromaticity, the Ts and the fused ring ÀH have been triggered
off automatically affording the fused triazole in excellent yield
(74–81%, Table 3). Thus, NBS is not required. Aldehyde, ketone
and other functional groups are tolerated by the metal-free
benign approach which can be utilized for further modifications.
1,2,4-Triazolo[3,4-a]pyridines and their quinoline analogues have
been the focus of growing attention in the recent past for their
known and potential biological activities.13
Fig. 1 Single crystal X-ray diffraction structure of compound 6i.
neighboring molecules leading to the generation of self-
aggregated low dimensional materials (ESIw).5,7
We acknowledge the financial supports of this work by the
DST (project no. SR/S1/OC-22/2006), CRNN and CSIR
(SRF), India.
In contrast to the literature methods, it has no restriction
regarding placement of the substitution pattern around the
triazole motif (6) by utilizing designed precursors. We have
considerably expanded the scope towards synthesis of the chiral
triazoles14 (6o–q, 1, Scheme 4) from the commercially available
chiral aliphatic amine. Chiral 1,2,4-triazoles are well-known as
drugs and fungicides.10 Azomethine imine bearing the chiral sugar
moieties can also be tolerated in this approach and efficiently
utilized (2–4) for the synthesis of sugar-based 1,2,4-triazoles (6r, s)
and their functionalized fused analogues (8g–i). The unnatural
nucleoside analogues synthesized for the first time are potential
candidates for new drug design and other applications.15
Notes and references
1 (a) K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 1998, 98,
863–909; (b) J. K. Gallos and A. E. Koumbis, Curr. Org. Chem.,
2003, 7, 397–426; (c) N. Chatterjee, P. Pandit, S. Halder, A. Patra
and D. K. Maiti, J. Org. Chem., 2008, 73, 7775–7778.
2 B. M. Trost, S. M. Silverman and J. P. Stambuli, J. Am. Chem.
Soc., 2007, 129, 12398–12399.
3 (a) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 565;
(b) K.-I. Washizuka, K. Nagai, S. Minakata, I. Ryu and
M. Komatsu, Tetrahedron Lett., 1999, 40, 8849–8853; (c) R. F.
C. Jones, S. J. Hollis and J. N. Iley, Arkivoc, 2007, 152–166;
(d) N. D. Shapiro, Y. Shi and F. D. Toste, J. Am. Chem. Soc.,
2009, 131, 11654–11655.
4 L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887–2902.
5 (a) P. Pandit, N. Chatterjee, S. Halder, S. K. Hota, A. Patra and
D. K. Maiti, J. Org. Chem., 2009, 74, 2581–2583; (b) D. K. Maiti,
S. Halder, P. Pandit, N. Chatterjee, D. De Joarder, N. Pramanik,
Y. Saima, A. Patra and P. K. Maiti, J. Org. Chem., 2009, 74,
8086–8097.
The structure is determined by means of X-ray diffraction
(6i, Fig. 1) analyses.16 It reveals the outward orientation7,17 of
all the three aromatic substituents located side-by-side and
also strong intermolecular hydrogen bonding between the p-Cl
and o-H atoms (2.87 A) which have significant roles
for creating the gluing non-covalent interactions among the
6 G. Molteni and A. Ponti, Tetrahedron: Asymmetry, 2004, 15,
3711–3714.
7 A. Qin, C. K. W. Jim, Y. Tang, J. W. Y. Lam, J. Liu, F. Mahtab,
P. Gao and B. Z. Tang, J. Phys. Chem. B, 2008, 112, 9281–9288.
8 T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan and
V. V. Fokin, J. Am. Chem. Soc., 2008, 130, 14972–14974.
9 A. Domling, Chem. Rev., 2006, 106, 17–89.
10 (a) C. Sheng, W. Zhang, H. Ji, M. Zhang, Y. Song, H. Xu, J. Zhu,
Z. Miao, Q. Jiang, J. Yao, Y. Zhou, J. Zhu and J. Lu, J. Med. Chem.,
2006, 49, 2512–2525; (b) X. Cao, F. Li, M. Hu, W. Lu, G.-A. Yu and
S. H. Liu, J. Agric. Food Chem., 2008, 56, 11367–11375.
11 (a) B. Stanovnik and J. Svete, Chem. Rev., 2004, 104, 2433–2480;
(b) J.-P. Zhang, Y.-Y. Lin, W.-X. Zhang and X.-M. Chen, J. Am.
Chem. Soc., 2005, 127, 14162–14163; (c) E. Orselli, G. S. Kottas,
A. E. Konradsson, P. Coppo, R. Frhlich, L. D. Cola, A. van Dijken,
M. Bchel and H. Brner, Inorg. Chem., 2007, 46, 11082–11093.
12 (a) A. Kakefuda, T. Suzuki, T. Tobe, A. Tahara, S. Sakamoto and
S.-I. Tsukamoto, Bioorg. Med. Chem., 2002, 10, 1905–1912;
(b) D. Boeglin, S. Cantel, A. Heitz, J. Martinez and
J.-A. Fehrentz, Org. Lett., 2003, 5, 4465–4468; (c) G.-Y. Fu,
L. Guo, X.-C. Mao, S.-R. Sheng, S.-Y. Fei and M.-Z. Cai, Arkivoc,
2008, (ii), 287–293.
13 L.-J. Guo, C.-X. Wei, J.-H. Jia, L.-M. Zhao and Z.-S. Quan,
Eur. J. Med. Chem., 2009, 44, 954–958.
14 S. R. El-Zemity, A. M. El-Shazly and E. A. Kadous, Res. J. Agric.
Biol. Sci., 2006, 2, 380–383.
15 J. Stambasky, M. Hocek and P. Kocovsky, Chem. Rev., 2009, 109,
6729–6764.
16 CCD deposition code of compound 6i: 741300.
17 Observed dihedral angles: N1–C8–C16–C21
=
À142.21;
N1–C9–C10–C15 = +138.21; C8–N1–C6–C5 = +97.91.
Scheme 4 Evaluation of precursor scope.
ꢀc
This journal is The Royal Society of Chemistry 2010
2024 | Chem. Commun., 2010, 46, 2022–2024