E
C. Jin et al.
Letter
Synlett
nyl)-3,4-dihydroquinolin-2(1H)-ones, undergo an addition-
al classical Julia–Lythgoe elimination at high temperature to
form the corresponding quinolin-2(1H)-ones.
Kasibhatla, S. Cancer Lett. 2009, 274, 243. (h) Cheng, P.; Zhang,
Q.; Ma, Y.-B.; Jiang, Z.-Y.; Zhang, X.-M.; Zhang, F.-X.; Chen, J.-J.
Bioorg. Med. Chem. Lett. 2008, 18, 3787.
(2) (a) Anzini, M.; Cappelli, A.; Vomero, S. J. Heterocycl. Chem. 1991,
28, 1809. (b) Godard, A.; Fourquez, J. M.; Tamion, R.; Marsais, F.;
Quéguiner, G. Synlett 1994, 235. (c) Guarna, A.; Lombardi, E.;
Machetti, F.; Occhiato, E. G.; Scarpi, D. J. Org. Chem. 2000, 65,
8093.
(3) (a) Conley, R. T.; Knopka, W. N. J. Org. Chem. 1964, 29, 496.
(b) Manimaran, T.; Thiruvengadam, T. K.; Ramakrishnan, V. T.
Synthesis 1975, 739. (c) Elliott, M. C.; Wordingham, S. V. Synlett
2004, 898.
Based on the present results and related reports in the
literature,6,10–12 a plausible reaction mechanism is proposed
as shown in Figure 2. First, Ag(I) is oxidized by persulfate
anion to form Ag(II), which then triggers a single-electron-
transfer process of the N-aryloxamic acid 1 to regenerate
the Ag(I) and form the N-arylcarbamoyl radical A with re-
lease of CO2. Subsequently, the N-arylcarbamoyl radical A
adds to the alkene to form radical intermediate B, which
undergoes an intramolecular cyclization to produce radical
C. Radical C then undergoes an oxidative single-electron-
transfer/deprotonation/aromatization sequence to give cor-
responding product D. In addition, it is noteworthy that
when phenyl vinyl sulfone is used, the quinolin-2(1H)-one
E is obtained as the final product through a Julia–Lythgoe
elimination reaction of D.
(4) For selected examples, see: (a) Tsuritani, T.; Yamamoto, Y.;
Kawasaki, M.; Mase, T. Org. Lett. 2009, 11, 1043. (b) Felpin, X.-F.;
Coste, J.; Zakri, C.; Fouquet, E. Chem. Eur. J. 2009, 15, 7238.
(c) Zhang, L.; Sonaglia, L.; Stacey, J.; Lautens, M. Org. Lett. 2013,
15, 2128. (d) Wu, J.; Xiang, S.; Zeng, J.; Leow, M.; Liu, X.-W. Org.
Lett. 2014, 17, 222. (e) Manikandan, R.; Jeganmohan, M. Org.
Lett. 2014, 16, 3568. (f) Li, B.; Park, Y.; Chang, S. J. Am. Chem. Soc.
2014, 136, 1125. (g) El Ali, B.; Okuro, K.; Vasapollo, G.; Alper, H.
J. Am. Chem. Soc. 1996, 118, 4264.
(5) For selected examples, see: (a) Wu, T.; Mu, X.; Liu, G. Angew.
Chem. Int. Ed. 2011, 50, 12578. (b) Mai, W.-P.; Wang, J.-T.; Yang,
L.-R.; Yuan, J.-W.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Lett. 2013,
16, 204. (c) Zhou, S.-L.; Guo, L.-N.; Wang, S.; Duan, X.-H. Chem.
Commun. 2014, 50, 3589. (d) Mai, W.-P.; Sun, G.-C.; Wang, J.-T.;
Song, G.; Mao, P.; Yang, L.-R.; Yuan, J.-W.; Xiao, Y.-M.; Qu, L.-B.
J. Org. Chem. 2014, 79, 8094. (e) Wang, F.-X.; Tian, S.-K. J. Org.
Chem. 2015, 80, 12697. (f) Gao, F.; Yang, C.; Gao, G.-L.; Zheng, L.;
Xia, W. Org. Lett. 2015, 17, 3478. (g) Wang, Q.; Han, G.; Liu, Y.;
Wang, Q. Adv. Synth. Catal. 2015, 357, 2464. (h) Zhang, H.; Gu, Z.;
Li, Z.; Pan, C.; Li, W.; Hu, H.; Zhu, C. J. Org. Chem. 2016, 81, 2122.
(i) Wang, K.; Chen, X.; Yuan, M.; Yao, M.; Zhu, H.; Xue, Y.; Luo, Z.;
Zhang, Y. J. Org. Chem. 2018, 83, 1525. (j) Wu, J.; Zhang, J.-Y.;
Gao, P.-G.; Xu, S.-L.; Guo, L.-N. J. Org. Chem. 2018, 83, 1046.
(k) Cui, Z.; Du, D.-M. J. Org. Chem. 2018, 83, 5149. (l) Ling, A.;
Zhang, L.; Tan, R. X.; Liu, Z.-Q. J. Org. Chem. 2018, 83, 14489.
(m) Ren, H.; Zhang, M.; Zhang, A. Synthesis 2018, 50, 575.
(n) Gao, R.-X.; Luan, X.-Q.; Xie, Z.-Y.; Yang, L.; Pei, Y. Org. Biomol.
Chem. 2019, 17, 5262.
In conclusion, we have developed a practical silver-cata-
lyzed tandem decarboxylative radical addition/cyclization
of oxamic acids with alkenes to give various 4-aryl-3,4-di-
hydroquinolin-2(1H)-ones,
4-(-carbonyl)-3,4-dihydro-
quinolin-2(1H)-ones, or quinolin-2(1H)-ones in aqueous
solution.14 This general protocol features mild reaction con-
ditions and a broad range of easily accessible substrates.
Funding Information
Financial support from the National Natural Science Foundation of
China (21302130 and 21676166), the Science and Technology De-
partment of Zhejiang Province (2014C31141 and LGG20B060002),
and the Department of Education of Zhejiang Province (Y201941045)
are acknowledged with thanks.
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
D
e
p
armt
e
ntof
Z
h
e
j
i
a
n
g
Pro
v
i
n
c
e
(2
0
1
4
C
3
1
1
4
1)D
e
p
artm
e
ntof
E
d
u
c
ati
o
n
of
Z
h
e
j
i
a
n
g
Pro
v
i
n
c
e
(Y
2
0
1
9
4
1
0
4
5)Nati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
3
0
2
1
3
0)Nati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
6
7
6
1
6
6)
Supporting Information
(6) (a) Minisci, F.; Coppa, F.; Fontana, F. J. Chem. Soc., Chem.
Commun. 1994, 679. (b) Minisci, F.; Fontana, F.; Coppa, F.; Yan,
Y. M. J. Org. Chem. 1995, 60, 5430.
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(7) (a) Pawar, G. G.; Robert, F.; Grau, E.; Cramail, H.; Landais, Y.
Chem. Commun. 2018, 54, 9337. (b) DiLabio, G. A.; Scanlan, E.
M.; Walton, J. C. Org. Lett. 2005, 7, 155. (c) Kim, I.; Kang, G.; Lee,
K.; Park, B.; Kang, D.; Jung, H.; He, Y.-T.; Baik, M.-H.; Hong, S.
J. Am. Chem. Soc. 2019, 141, 9239. (d) Jatoi, A.-H.; Pawar, G.-G.;
Robert, F.; Landais, Y. Chem. Commun. 2019, 55, 466.
(8) (a) Millán-Ortiz, A.; López-Valdez, G.; Cortez-Guzmán, F.;
Miranda, L.-D. Chem. Commun. 2015, 51, 8345. (b) Betou, M.;
Male, L.; Steed, J.-W.; Grainger, R.-S. Chem. Eur. J. 2014, 20, 6505.
(c) López-Valdez, G.; Olguín-Uribe, S.; Miranda, L.-D. Tetrahe-
dron Lett. 2007, 48, 8285.
(9) Petersen, W. F.; Taylor, R. J. K.; Donald, J. R. Org. Lett. 2017, 19,
874.
(10) Bai, Q.-F.; Jin, C.; He, J.-Y.; Feng, G. Org. Lett. 2018, 20, 2172.
(11) Fan, H.; Pan, P.; Zhang, Y.; Wang, W. Org. Lett. 2018, 20, 7929.
(12) Chen, G.; Li, C.; Peng, J.; Yuan, Z.; Liu, P.; Liu, X. Org. Biomol.
Chem. 2019, 17, 8527.
References and Notes
(1) For selected examples, see: (a) Morita, S.; Irie, Y.; Saitoh, Y.;
Kohri, H. Biochem. Pharmacol. 1976, 25, 1837. (b) Hayashi, H.;
Miwa, Y.; Miki, I.; Ichikawa, S.; Yoda, N.; Ishii, A.; Kono, M.;
Suzuki, F. J. Med. Chem. 1992, 35, 4893. (c) Hanuman, J. B.; Katz,
A. Nat. Prod. Lett. 1993, 3, 227. (d) Leeson, P.-D.; Baker, R.;
Carling, R.-W.; Kulagowski, J.-J.; Mawer, I.-M.; Ridgill, M.-P.;
Rowley, M.; Smith, J.-D.; Stansfield, I.; Stevenson, G.-I.; Foster,
A.-C.; Kemp, J.-A. Bioorg. Med. Chem. Lett. 1993, 3, 299. (e) Chen,
M.-H.; Fitzgerald, P.; Singh, S. B.; O’Neill, E. A.; Schwartz, C. D.;
Thompson, C. M.; O’Keefe, S. J.; Zaller, D. M.; Doherty, J. B.
Bioorg. Med. Chem. Lett. 2008, 18, 2222. (f) Kraus, J. M.; Verlinde,
C. L. M. J.; Karimi, M.; Lepesheva, G. I.; Gelb, M. H.; Buckner, F. S.
J. Med. Chem. 2009, 52, 1639; corrigendum: J. Med. Chem. 2009,
52, 4549. (g) Claassen, G.; Brin, E.; Crogan-Grundy, C.;
Vaillancourt, M. T.; Zhang, H. Z.; Cai, S. X.; Drewe, J.; Tseng, B.;
(13) (a) Feng, G.; Jin, C.; Bai, Q.-F.; He, J.-Y.; Wu, L. CN 108047133,
2018. (b) Feng, G.; Jin, C.; Bai, Q.-F.; He, J.-Y.; Wu, L. CN
107987017, 2018.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F