Inorg. Chem. 2010, 49, 3977–3979 3977
DOI: 10.1021/ic100390x
Dithiodiolate Ligands: Group 4 Complexes and Application
in Lactide Polymerization
Ekaterina Sergeeva, Jacob Kopilov, Israel Goldberg, and Moshe Kol*
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv,
Tel Aviv 69978, Israel
Received February 26, 2010
Dithiodiolate ligands were synthesized by reacting 1,2-ethane-
dithiol or 1,2-benzenedithiol with 2,2-bis(trifluoromethyl)oxirane,
led selectively to mononuclear octahedral group 4 complexes of the
type [{OSSO}M(OR)2], which features C2 symmetry and fluxional
behavior, and were highly active in the ring-opening polymerization
of rac- and L-lactide.
to other metals, group 4 metal complexes are less explored for
cyclic ester ROP.7-13 Typical catalysts are composed of
chelating phenoxo-type spectator ligands and labile alkoxo
groups.14,15 Of those, zirconium (and hafnium) complexes
are typically more active and exhibit superior stereocontrol in
comparison to the analogous titanium species.12,13
Chelating ligands featuring phenoxo-type anionic ligands
have dominated the coordination chemistry of oxophilic
main-group and transition metals and have led to numerous
successful catalysts16 while the related nonaromatic alkoxo-
based ligands have been explored to a lesser extent.17 For
example, complexes of {OSSO}-type dithiodiphenolate
ligands have led to the isospecific polymerization of styrene
(when bound to titanium)18 and to heteroselective poly-
merization of rac-lactide (when bound to scandium),19
whereas {OSSO}-type dithiodiolate ligands have never been
reported, to our knowledge. Herein, we describe the synthesis
of the first dithiodiolate ligand precursors, their coordination
chemistry around group 4 metals, and the application of
Poly(lactic acid) (PLA) is often referred to as “bioplastic”
or “greenplastic” because it is produced from renewable
resources and because of its ability to biodegrade.1 Having
mechanical properties similar to those of polystyrene.2 it may
replace less environmentally friendly plastics in packaging
applications, while its biocompatibility enables its applica-
tion in biomedical products.3,4 The preferred method for
producing PLA is ring-opening polymerization (ROP) of the
dilactone of lactic acid;lactide;because it enables control
of the molecular weight and tacticity, which affect the
plastic’s mechanical properties and its tendency to degrade.5
these complexes in the ROP of rac- and L-lactide.
Polymerization of L-lactide leads to isotactic PLA, whereas
The ligands were designed to include either an aliphatic or
an aromatic two-carbon bridge between the sulfur donors
and two trifluoromethyl groups on the R-carbon atoms to
sterically and electronically diminish the bridging tendency of
polymerization of rac-lactide can lead to atactic, heterotactic,
stereoblock, or stereocomplex PLA as determined by the
catalyst employed.6 Therefore, in the past decade, consider-
able efforts were made to design well-defined metal-based
catalysts as active polymerization initiators. In comparison
(12) Chmura, A. J.; Davidson, M. G.; Frankis, C. J.; Jones, M. D.; Lunn,
M. D. Chem. Commun. 2008, 1293.
(13) Zelikoff, A. L.; Kopilov, J.; Goldberg, I.; Coates, G. W.; Kol, M.
Chem. Commun. 2009, 6804.
(14) For titanium complexes of a bis(phenoxide) spectator ligand and
amido labile groups, see: Takashima, Y.; Nakayama, Y.; Hirao, T.; Yasuda,
H.; Harada, H. J. Organomet. Chem. 2004, 689, 612.
(15) For group 4 complexes featuring spectator chelating tosylamido
ligands, see: Schwarz, A. D.; Thompson, A. L.; Mountford, P. Inorg. Chem.
2009, 48, 10442.
*To whom correspondence should be addressed. E-mail: moshekol@
post.tau.ac.il.
(1) Williams, C. K.; Hillmyer, M. A. Polym. Rev. 2008, 48, 1.
(2) Dorgan, J. R.; Lehermeier, H.; Mang, M. J. Polym. Environ. 2000, 8, 1.
(3) Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835.
(4) Albertsson, A.-C.; Varma, I. K. Biomacromolecules 2003, 4, 1466.
(5) For a recent review, see: Platel, R. H.; Hodgson, L. M.; Williams,
C. K. Polym. Rev. 2008, 48, 11.
(6) For a recent review, see: Thomas, C. M. Chem. Soc. Rev. 2010, 39, 165.
(7) (a) Kim, Y.; Verkade, J. G. Organometallics 2002, 21, 2395. (b) Kim, Y.;
Jnaneshwara, G. K.; Verkade, J. G. Inorg. Chem. 2003, 42, 1437.
(8) Russell, S. K.; Gamble, C. L.; Gibbins, K. J.; Juhl, K. C. S.; Mitchel,
W. S., III; Tumas, A. J.; Hofmeister, G. E. Macromolecules 2005, 38, 10336.
(9) Gendler, S.; Segal, S.; Goldberg, I.; Goldschmidt, Z.; Kol, M. Inorg.
Chem. 2006, 45, 4783.
(10) Gregson, C. K. A.; Blackmore, I. J.; Gibson, V. C.; Long, N. J.;
Marshall, E. L.; White, A. J. P. Dalton Trans. 2006, 3134.
(11) Chmura, A. J.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Mahon,
M. F.; Johnson, A. F.; Khunkamchoo, P.; Roberts, S. L.; Wong, S. S. F.
Macromolecules 2006, 39, 7250.
(16) For selected examples, see: (a) Makio, H.; Fujita, T. Acc. Chem. Res.
2009, 42, 1532. (b) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am. Chem. Soc. 2000,
122, 10706. (c) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691. (d) Saito, B.;
Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2007, 129, 1978.
(17) See, however: Carpentier, J.-F. Dalton Trans. 2010, 39, 37.
€
€
(18) (a) Capacchione, C.; Proto, A.; Ebeling, H.; Mulhaupt, R.; Moller,
K.; Spaniol, T. P.; Okuda, J. J. Am. Chem. Soc. 2003, 125, 4964. (b) Beckerle,
K.; Manivannan, R.; Lian, B.; Meppelder, G.-J. M.; Raabe, G.; Spaniol, T. P.;
Ebeling, H.; Pelascini, F.; M€ulhaupt, R.; Okuda, J. Angew. Chem., Int. Ed. 2007,
46, 4790.
(19) Ma, H.; Spaniol, T. P.; Okuda, J. Angew. Chem., Int. Ed. 2006, 45,
7818.
r
2010 American Chemical Society
Published on Web 03/31/2010
pubs.acs.org/IC