Mesomorphic and Luminescent ZnII Complexes
ZnL R (4): White solid. Yield: 0.13 g (75%). IR (KBr): ν = 2931–
2855 (stretching aliphatic CH), 1735 (stretching C=O), 1607
(stretching C=N), 1258 cm–1. 1H NMR (300 MHz, CDCl3, 25 °C):
δ = 8.18 (s, 2 H, CH=N), 8.13 (d, J = 8.79 Hz, 4 H, H2Ј,6Ј), 7.13
(t, J = 8.79 Hz, 2 H, H6), 6.97 (d, J = 8.82 Hz, 4 H, H3Ј,5Ј), 6.64
(d, J = 2.19 Hz, 2 H, H3), 6.48 (dd, J = 2.19 Hz, J = 8.79 Hz, 2 H,
H5), 3.90 (s, 6 H, OCH3), 3.83, 3.32 (m, 4 H, C=N-CH2), 1.28–
chat, A. Baro, N. Steinke, F. Giesselmann, C. Hoegele, G.
Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M.
Tosoni, Angew. Chem. Int. Ed. 2007, 46, 4832–4887; d) F. Ca-
merel, J. Barberá, J. Otsuki, T. Tokimoto, Y. Shimazaki, L.-Y.
Chen, S.-H. Liu, M.-S. Lin, C.-C. Wu, R. Ziessel, Adv. Mater.
2008, 20, 3462–3467; e) T. Yasuda, H. Ooi, J. Morita, Y. Ak-
ama, K. Minoura, M. Funahashi, T. Shimomura, T. Kato, Adv.
Funct. Mater. 2009, 19, 411–419.
˜
12
1
0.95 (m, 20 H, aliphatic protons) ppm. UV/Vis (CH2Cl2): λabs.
=
[3] a) E. Terrazzi, J.-m. Bénech, J.-P. Rivera, G. Bernardinelli, B.
Donnio, D. Guillon, C. Piguet, Dalton Trans. 2003, 769–772;
b) F. Morale, R. W. Date, D. Guillon, D. W. Bruce, R. L. Finn,
C. Wilson, A. J. Blake, M. Schöder, B. Donnio, Chem. Eur. J.
2003, 9, 2484–2501; c) R. Giménez, A. B. Manrique, S. Uriel,
J. Barberá, J. L. Serrano, Chem. Commun. 2004, 2064–2064; d)
G. Barberio, A. Bellusci, A. Crispini, M. Ghedini, A. Go-
lemme, P. Prus, D. Pucci, Eur. J. Inorg. Chem. 2005, 181–188;
e) E. Cavero, S. Uriel, P. Romero, J. L. Serrano, R. Giménez,
J. Am. Chem. Soc. 2007, 129, 11608–11618; f) I. Aiello, A.
Bellusci, A. Crispini, M. Ghedini, D. Pucci, T. Spataro, Mol.
Cryst. Liq. Cryst. 2008, 481, 1–13; g) P. Ovejero, M. J. Mayoral,
M. Cano, J. A. Campo, J. V. Heras, P. Fernández-Tobar, M.
Valién, E. Pinilla, M. R. Torres, Mol. Cryst. Liq. Cryst. 2008,
481, 34–55; h) K. A. Ames, S. R. Collinson, A. J. Blake, C. Wil-
son, J. B. Love, D. W. Bruce, B. Donnio, D. Guillon, M.
Schröder, Eur. J. Inorg. Chem. 2008, 5056–5066; i) F. Morale,
R. L. Finn, S. R. Collinson, A. J. Blake, C. Wilson, D. W.
Bruce, D. Guillon, B. Donnio, M. Schroöder, New J. Chem.
2008, 32, 297–305.
[4] a) P. G. Cozzi, L. S. Dolci, A. Garelli, M. Montalti, L. Prodi,
N. Zaccheroni, New J. Chem. 2003, 27, 692–697; b) T. Yu, W.
Su, W. Li, Z. Hong, R. Hua, B. Li, Thin Solid Films 2007, 515,
4080–4084; c) S. J. Wezenberg, A. W. Kleij, Angew. Chem. Int.
Ed. 2008, 47, 2354–2364.
[5] M. La Deda, M. Ghedini, I. Aiello, A. Grisolia, Chem. Lett.
2004, 33, 1060–1061.
[6] D. Pucci, I. Aiello, A. Bellusci, G. Callipari, A. Crispini, M.
Ghedini, Mol. Cryst. Liq. Cryst. 2009, 500, 144–154.
[7] a) M. Sêpelj, A. Lesac, U. Baumeister, S. Diele, D. W. Bruce,
Z. Hamersˇak, Chem. Mater. 2006, 18, 2050–2058; b) M. Sêpelj,
A. Lesac, U. Baumeister, S. Diele, H. L. Nguyen, D. W. Bruce,
J. Mater. Chem. 2007, 17, 1154–1165.
[8] a) . T. Imrie, P. A. Henderson, Chem. Soc. Rev. 2007, 36, 2096–
2124; b) C. V. Yelamaggad, S. A. Nagamani, U. S. Hiremath,
D. S. S. Rao, S. K. Prasad, Liq. Cryst. 2002, 29, 1401–1408; c)
R. Achten, A. Koudijs, Z. Karczamarzyk, A. T. M. Marcelis,
E. J. R. Sudholter, Liq. Cryst. 2004, 31, 215–227.
360, 275 nm; λem. = 432 nm. C42H46N2O8Zn (772.21): calcd. C
65.33, H 6.00, N 3.63; found C 65.18, H 6.15, N 3.89. Thermal
behaviour is reported in Table 2.
ZnL R (5): White solid. Yield: 0.13 g (80%). IR (KBr): ν = 2926–
˜
12
6
2854 (stretching aliphatic CH), 1732 (stretching C=O), 1606
(stretching C=N), 1535, 1255 cm–1. 1H NMR (300 MHz, CDCl3,
25 °C): δ = 8.17 (s, 2 H, CH=N), 8.11 (d, J = 8.54 Hz, 4 H, H2Ј,6Ј),
7.14 (t, J = 8.54 Hz, 2 H, H6), 6.95 (d, J = 8.54 Hz, 4 H, H3Ј,5Ј),
6.65 (d, J = 2.44 Hz, 2 H, H3), 6.51 (dd, J = 2.44 Hz, J = 8.54 Hz,
2 H, H5), 4.04 (t, J = 6.10 Hz, 4 H, OCH2), 3.81, 3.33 (m, 4 H,
C=NCH2), 1.87–0.88 (m, 42 H, aliphatic protons) ppm. UV/Vis
(CH2Cl2): λabs. = 360, 275 nm; λem. = 432 nm. C52H66N2O8Zn
(912.48): calcd. C 68.45, H 7.29, N 3.07; found C 68.28, H 7.25, N
2.89. Thermal behaviour is reported in Table 2.
ZnL12R12 (6): White solid. Yield: 0.12 g (76%). IR (KBr): ν =
˜
2924–2853 (stretching aliphatic CH), 1732 (stretching C=O), 1606
(stretching C=N), 1535, 1254 cm–1. 1H NMR (300 MHz, CDCl3,
25 °C): δ = 8.17 (s, 2 H, CH=N), 8.11 (d, J = 8.54 Hz, 4 H, H2Ј,6Ј),
7.14 (t, J = 8.54 Hz, 2 H, H6), 6.95 (d, J = 8.54 Hz, 4 H, H3Ј,5Ј),
6.65 (d, J = 2.44 Hz, 2 H, H3), 6.50 (dd, J = 2.44 Hz, J = 8.54 Hz,
2 H, H5), 4.03 (t, J = 6.10 Hz, 4 H, OCH2), 3.79, 3.31 (m, 4 H,
C=N-CH2), 1.85–0.83 (m, 66 H, aliphatic protons) ppm. UV/Vis
(CH2Cl2): λabs. = 355, 275 nm; λem. = 432 nm. C64H90N2O8Zn
(1080.80): calcd. C 71.12, H 8.39, N 2.59; found C 71.28, H 8.45,
N 2.28. Thermal behaviour is reported in Table 2.
Acknowledgments
Financial support received from the Ministero dellЈIstruzione,
dellЈUniversità e della Ricerca Scientifica (MIUR) through the
Centro di Eccellenza CEMIF.CAL (CLAB01TYEF) and the PRIN
projects 2006038447 and 2007WJMF2W is gratefully acknowl-
edged.
[9] D. Hall, F. H. Moore, J. Chem. Soc. A 1966, 1822–1824.
[10] J. Reglinski, S. Morris, D. E. Stevenson, Polyhedron 2002, 21,
2175–2182.
[11] G. E. Batley, D. P. Graddon, Aust. J. Chem. 1967, 20, 885–891.
[12] J. Sanmartín Matalobos, A. M. García-Deibe, M. Fondo, D.
Navarro, M. R. Bermejo, Inorg. Chem. Commun. 2004, 7, 311–
314.
[13] Molecular modelling was performed by using the UFF force
field (A. K. Rappè, C. Casewit, K. S. Colwell, W. A. God-
dard III, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024–
10035) implemented in the software package Program
Cerius3.0 (Molecular Simulation Inc., 1997).
[14] a) G. Pelz, S. Diele, W. Weissflog, Adv. Mater. 1999, 11, 707–
724; b) R. A. Reddy, C. Tschierske, J. Mater. Chem. 2006, 16,
907–961.
[15] J. N. Demas, G. A. Crosby, J. Phys. Chem. 1971, 75, 991–1024.
[16] W. R. Ware, W. Rothman, Chem. Phys. Lett. 1976, 39, 449–
453.
[1] a) T. Sano, Y. Nishio, Y. Hamada, H. Takahashi, T. Usuki, K.
Shibata, J. Mater. Chem. 2000, 10, 157–161; b) R. C. Evans, P.
Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093–
2126; c) X. Xu, Y. Liao, G. Yu, H. You, C. Di, Z. Su, D. Ma,
Q. Wang, S. Li, S. Wang, J. Ye, Y. Liu, Chem. Mater. 2007, 19,
1740–1748; d) H.-J. Son, W.-S. Han, J.-Y. Chun, B.-K. Kang,
S.-N. Kwon, J. Ko, S. J. Han, C. Lee, S. J. Kim, S. O. Kang,
Inorg. Chem. 2008, 47, 5666–5676; e) P. D. Vellis, J. A. Mikro-
yannidis, C.-N. Lo, C.-S. Hsu, J. Polym. Sci., Part A: Polym.
Chem. 2008, 46, 7702–7712; f) V. K. Rai, R. Srivastava, G.
Chauhan, K. Saxena, R. K. Bhardwaj, S. Chand, M. N. Kama-
lasanan, Mater. Lett. 2008, 62, 2561–2563; g) L. Chen, J. Qiao,
J. Xie, L. Duan, D. Zhang, L. Wang, Y. Qiu, Inorg. Chim. Acta
2009, 362, 2327–2333.
[2] a) M. O’Neill, S. M. Kelly, Adv. Mater. 2003, 15, 1135–1146;
b) J. Hanna, Opto-Electron. Rev. 2005, 13, 259–267; c) S. Las-
Received: June 15, 2009
Published Online: August 31, 2009
Eur. J. Inorg. Chem. 2009, 4274–4281
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
4281