group in 18 with pivaloyl chloride in the presence of DMAP
furnished the corresponding pivaloate 19 in 85% yield. The
terminal alkene in 19 was converted into the corresponding
primary alcohol via a hydroboration/oxidation process;11 this
was then protected as its TBS ether 20 in 76% yield over the
two steps. Selective removal of the pivaloate functionality in
20 by DIBAL-H reduction afforded the free alcohol 21 in 90%
yield. Sequential Dess-Martin12 and Pinnick20 oxidations of
primary alcohol 21 afforded the corresponding carboxylic acid,
which was then activated by Mukaiyama reagent21 and coupled
with L-serine methyl ester to give dipeptide 22 in 86% yield
over the three steps. Activation of hydroxy amide 22 with
diethylaminosulfur trifluoride (DAST) in CH2Cl2 at -78 °C
afforded the oxazoline,22 which was then treated with bromo-
trichloromethane (BTCM) and 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU)23 at 0 °C to produce oxazole 23 in 75% yield.
DIBAL-H reduction of the ester group in 23 furnished the
corresponding alcohol 24 in 73% yield. Dess-Martin oxida-
tion12 of alcohol 24 afforded an aldehyde, which was subjected
to Keck allylation14 to produce the homoallylic alcohol 25 with
>94% diastereoselectivity and 65% yield over the two steps
(78% yield based on recovered starting material). Finally,
O-methylation of homoallylic alcohol 25 with iodomethane in
the presence of sodium hydride afforded 3 in 93% yield.
In summary, we have accomplished an efficient and highly
stereoselective synthesis of 3 corresponding to the C9-C23
fragment of rhizopodin (28 steps, 4.1% overall yield). Key
transformations in the sequence include installation of the
C(20) and C(21) stereogenic centers via asymmetric crotyl-
boration and hydroxyl-directed reductive opening of an
epoxide, construction of the oxazole via Williams’ oxazoline
dehydrogenation protocol, and introduction of the C(11)
stereogenic center via an asymmetric Keck allylation.
Progress toward the development of an efficient total
synthesis of rhizopodin will be reported in due course.
(14) Keck, G. E.; Tarbet, K. H.; Leo, S.; Geraci, L. S. J. Am. Chem.
Soc. 1993, 115, 8467–8468.
(15) (a) Naruta, Y.; Ushida, S.; Maruyama, K. Chem. Lett. 1979, 919–
922. (b) Keck, G. E.; Park, M.; Krishnamurthy, D. J. Org. Chem. 1993,
58, 3787–3788. (c) Gauthier, D. R., Jr.; Carreira, E. M. Angew. Chem., Int.
Ed. Engl. 1996, 35, 2363–2364. (d) Danishefsky, S. J.; DeNinno, S. L.;
Chen, S. H.; Boisvert, L.; Barbachyn, M. J. Am. Chem. Soc. 1989, 111,
5810–5818. (e) Kiyooka, S.; Heathcock, C. H. Tetrahedron Lett. 1983, 24,
4765–4768.
(16) Hillier, M. C.; Price, A. T.; Meyers, A. I. J. Org. Chem. 2001, 66,
6037–6045.
Acknowledgement. We acknowledge financial support
from the Hong Kong Polytechnic University and financial
support from the Shenzhen Bureau of Science, Technology
& Information (JC200903160367A, ZD200806180051A). Xu
thanks the support from the Shenzhen Foundation for R&D
(SY200806300179A, JC200903160372A) and Nanshan Sci-
ence & Technology (NANKEYUAN2009083).
(17) (a) Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91,
61–63. (b) Horner, L.; Hoffman, H.; Wippel, H. G.; Klahre, G. Chem. Ber.
1959, 92, 2499–2505. (c) Wadsworth, W. S., Jr.; Emmons, W. D. J. Am.
Chem. Soc. 1961, 83, 1733–1738. (d) Wadsworth, D. H.; Schupp, I. O. E.;
Sous, E. J.; Ford, J. J. A. J. Org. Chem. 1965, 30, 680–685. (e) Maryanoff,
B. E.; Reitz, A. B. Chem. ReV. 1989, 89, 863–927.
(18) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102,
5974–5976. (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.;
Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780.
(19) (a) Ma, P.; Martin, V. S.; Masamune, S.; Sharpless, K. B.; Viti,
S. M. J. Org. Chem. 1982, 47, 1378–1380. (b) Finan, J. M.; Kishi, Y.
Tetrahedron Lett. 1982, 23, 2719–2722.
Supporting Information Available: Full details for
experimental procedures for compounds 3, 5, 5a, 6, 6a,
7-10, 10a, 11, 11a, 12, 14-19, 19a, 20-22, 22a, and 23-25,
and 1H and 13C NMR spectra for compounds 3, 5, 5a, 6, 6a,
7, 9-10, 10a, 11, 11a, 12, 14-19, 19a, 20-22, 22a, and
23-25. This material is available free of charge via the
(20) Bal, B. S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron 1981,
37, 2091–2096.
(21) Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. 1976, 49–50.
(22) (a) Burrell, G.; Evans, J. M.; Jones, G. E.; Stemp, G. Tetrahedron
Lett. 1990, 31, 3649–3652. (b) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno,
M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165–1168.
(23) (a) Williams, D. R.; Lowder, P. D.; Gu, Y.-G.; Brooks, D. A.
Tetrahedron Lett. 1997, 38, 331–334. (b) Yeh, V. S. C. Tetrahedron 2004,
60, 11995–12042.
OL100515M
Org. Lett., Vol. 12, No. 9, 2010
2039