H.-S. Zhang et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2219–2223
2223
parison of the exo-2-methyl-3H-imidazo[4,5-b]pyridine substi-
tuted analogs (2a, 3a, 4a, 5a and 6a) revealed that the 4-fluor-
obenzylbutamide motif provided a significant potency advantage
versus butanoate (2a, 4a) and butyl ether (5a), affording the most
potent CCR5 inhibitor in this series (3a, IC50 = 14.4 nM). The polar
butanol counterpart (5a) without hydrophobic group turned out
inactive. This encouraging result proved the rationale of the func-
tionality inversion approach in the design of novel CCR5 antago-
nists. In addition, the potency data of series 2a–c and 3a–c
suggested a preference of 2-methyl-3H-imidazo[4,5-b]pyridine
over 3H-[1,2,3]triazolo[4,5-b]pyridine as an optimal heterocycle
motif, exemplified by the potent inhibitors 2b (IC50 = 112 nM)
and 3a (IC50 = 14.4 nM). And in most cases, the exo-tropane (1a,
3a) was more potent than the endo-tropane counterpart (1b, 3b).
This finding was consistent with the literature-reported activity
difference between the exo and endo-tropane isomers.16 According
to the NMR-based conformational studies, the tropane in the endo
series adopts a pseudo-boat conformation to minimize the 1,3-
diaxial strain between the bulky heterocycle and the carbon bridge
of the tropane, rather than the normally preferred chair conforma-
tion, as adopted by exo series.16 Consequently, the 2-methyl-3H-
imidazo[4,5-b]pyridine lies in approximately the same geometric
position for both the exo (1a, 3a) and endo (1b, 3b) series, but
the greater steric crowding for the endo isomer might result in a
subtle conformational difference that is less well tolerated by the
CCR5 receptor, leading to the deleterious effect.
(07QH14018, 08JC1422200) and National Science & Technology
Major Project (2009ZX09301-001) are greatly appreciated for the
financial supports.
References and notes
2. Moore, J. P.; Doms, R. W. Proc. Natl. Acad. Sci. 2003, 100, 10598.
3. Cascieri, M. A.; Springer, M. S. Curr. Opin. Chem. Biol. 2000, 4, 420.
4. Liu, R.; Paxton, W. A.; Choe, S.; Ceradini, D.; Martin, S. R.; Horuk, R.; MacDonald,
M. E.; Stuhlmann, H.; Koup, R. A.; Landau, N. R. Cell 1996, 86, 367.
5. Dragic, T.; Litwin, V.; Allaway, P. G.; Martin, R. S.; Huang, Y.; Nagashima, A. K.;
Cayanan, C.; Maddaon, J. P., et al Nature 1996, 281, 667.
6. (a) Palani, A.; Tagat, J. R. J. Med. Chem. 2006, 49, 2851; (b) Kazmierski, W.;
Kenakin, T.; Yang, H.; Boone, L.; DeAnda, F.; Watson, C.; Kenakin, T. Bioorg. Med.
Chem. 2003, 11, 2663.
7. Ma, D.; Yu, S.; Li, B.; Chen, L.; Chen, R.; Yu, K.; Zhang, L.; Chen, Z.; Zhong, D.;
Gong, Z.; Wang, R.; Jiang, H.; Pei, G. ChemMedChem 2007, 2, 187.
8. Sayana, S.; Khanlou, H. Expert Rev. Anti Infect. Ther. 2009, 7, 9.
9. Maeda, K.; Nakata, H.; Koh, Y.; Miyakawa, T.; Ogata, H.; Takaoka, Y.; Shibayama,
S.; Sagawa, K.; Fukushima, D.; Moravek, J.; Koyanagi, Y.; Mitsuya, H. J. Virol.
2004, 78, 8654.
10. Imamura, S.; Ichikawa, T.; Nishikawa, Y.; Kanzaki, N.; Takashima, K.; Niwa, S.;
Iizawa, Y.; Baba, M.; Sugihara, Y. J. Med. Chem. 2006, 49, 2784.
11. Kuritzkes, D.; Kar, S.; Kirkpatrick, P. Nat. Rev. Drug Disc. 2008, 7, 15.
12. Kondru, R.; Zhang, J.; Ji, C.; Mirzadegan, T.; Rotstein, D.; Sankuratri, S.; Dioszegi,
M. Mol. Pharm. 2008, 73, 789.
13. Maeda, K.; Das, D.; Ogata-Aoki, H.; Nakata, H.; Miyakawa, T.; Tojo, Y.; Norman,
R.; Takaoka, Y.; Ding, J. P.; Arnold, G. F.; Arnold, E.; Mitsuya, H. J. Biol. Chem.
2006, 281, 12688.
14. Zhang, H.-S.; Fan, X.; Chen, L.; Long, Y.-Q. Eur. J. Med. Chem., accepted for
publication.
15. Kazmierski, W. M.; Aquino, C.; Chauder, B. A.; Deanda, F.; Ferris, R.; Jones-
Hertzog, D. K.; Kenakin, T.; Koble, C. S.; Watson, C.; Wheelan, P.; Yang, H.;
Youngman, M. J. Med. Chem. 2008, 51, 6538.
16. Wood, A.; Armour, D. Prog. Med. Chem. 2005, 43, 239.
17. (a) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103,
3099; (b) Evans, D. A.; Britton, T. C.; Dorow, R. L.; Dellaria, J. F., Jr. Tetrahedron
1988, 44, 5525.
In conclusion, by adopting the functionality inversion and bio-
isostere replacement strategy, a new scaffold of (S)-a-phenyl-c-
aminobutanamide was identified as potent CCR5 inhibitors. An
efficient synthesis was developed to build the tropane substituted
(S)-a-phenyl-c-aminobutanamide and its bioisosteric derivatives,
involving the Evans chiral induction protocol and the reductive
amination reaction. The resulting (2S)-N-(4-fluorobenzyl)-4-(3-
(2-methyl-1H-benzo[d]imidazol-1-yl)-8-aza-bicyclo[3.2.1]octan-
8-yl)-2-phenylbutanamide displayed significantly high potency to
antagonize CCR5 receptor with nanomolar IC50 values, affording a
new scaffold for further development of CCR5 antagonists.
18. (a) Evans, D. A.; Wu, L. D.; Wiener, J. J. M.; Johnson, J. S.; Ripin, D. H. B.; Tedrow,
J. S. J. Org. Chem. 1999, 64, 6411; (b) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc.
1986, 108, 6757.
19. Lewin, A. H.; Sun, G.; Fudala, L.; Navarro, H.; Zhou, L.-M.; Popik, P.; Faynsteyn,
A.; Skolnick, P. J. Med. Chem. 1998, 41, 988.
20. Allegretti, M.; Berdini, V.; Cesta, M. C.; Curti, R.; Nicolini, L.; Topai, A.
Tetrahedron Lett. 2001, 42, 4257.
21. Mehta, L. K.; Parrick, J.; Payne, F. J. Chem. Soc., Perkin Trans. 1 1993, 11, 1261.
Acknowledgements
National Natural Science Foundation of China (30672528),
Science and Technology Commission of Shanghai Municipality