Scheme 1. Reaction Pairing Utilizing SulfonylationꢀSNAr with
Amino Alcoholsa
Figure 1. Reaction pairingstrategiestodiversebenzofusedsultams.
a Sulfonylation: NaHCO3, CH2Cl2, H2O, rt. SNAr: Cs2CO3, DMF,
140 °C, mW. Mitsunobu: PPh3, DIAD, THF, rt.
the generation of sultam scaffolds.5 While sulfonylation
and Mitsunobu alkyaltion are well precedented for
sulfonamides,6 the ability of these synthons to undergo
facile nucleophilic aromatic substitution (SNAr) is lesser
known.2f,5 Collectively, it was therefore envisioned that
pairing of the reaction triad (sulfonylation, SNAr addition
and Mitsunobu alkylation) in varying order alongside the
central o-fluorobenzenesulfonyl chloride building blocks
could afford rapid access to both bridged- and fused-
tricyclic sultams. This simple approach obviates the need
for construction of elaborate multifunctional scaffolds and
would merely require o-fluorobenzenesulfonyl chlorides,
amines and alcohols as building blocks. Simple changes in
the reaction pair sequence (e.g., sulfonylationꢀSNAr vs
sulfonylationꢀMitsunobuꢀSNAr) or changes in building
blocks (1,2-amino alcohol vs 1,3-amino alcohol) allows
access to skeletal and stereochemical diversity (Figure 1).
Investigations commenced with the exploration of
pairing (S)-prolinol with 4-bromo-2-fluorobenzenesulfonyl
chloride via a combination of sulfonylation, SNAr and
Mitsunobu methodologies (Scheme 1). Thus, (S)-prolinol
was sulfonylated with 4-bromo-2-fluorobenzenesulfonyl
chloride in CH2Cl2/H2O, in the presence of NaHCO3 to
provide the β-hydroxy o-fluorobenzene sulfonamide 1 in
97% yield. Subjection of the sulfonamide to microwave
(mW) irradiation at 150 °C for 30 min in DMF in the
presence of Cs2CO3 gratifyingly produced the benzofused
tricyclic sultam 2in 88% yield. In contrast, SNAr addition of
(S)-prolinol to n-butyl-derived o-fluorobenzene sulfona-
mide 3 under mW irradiation in DMSO at 140 °C for
30 min afforded the desired SNAr adduct 4 in 97% yield.
Addition of PPh3 to a stirring solution of the prolinol-
derived SNAr adduct in THF (0.05 M), followed by slow
addition of DIAD, was found to proceed quickly (10 min)
to furnish the desired tricyclic benzothiadiazepine-1,1-di-
oxide 5in 91% yield. Overall, this approach rapidly furnishes
different sultam skeletons implementing a single sulfonyl
chloride in conjunction with an amino alcohol by merely
changing the order of reaction pairing.
With these results in hand, the utilization of this reaction
pairing strategy for the generation of benzofused sultams
was explored. Thus, the use of (S)-prolinol alongside
propargylamine derived o-fluorobenzene sulfonamides in
the established SNArꢀMitsunobu pairing afforded the
desired tricycylic sultam 6 in good yield (Scheme 2). A
simple switch in the amino alcohol component to (R)-(þ)-
3-hydroxypyrrolidine gratifyingly afforded the corre-
sponding bridged, tricyclic benzofused sultams 7 and 8 in
good to moderate yield. Of notable importance is the facile
production of the unique bridged tricyclic sultam 7 containing
a bridgehead nitrogen connected to an SO2 moiety. It is pro-
posed that this “bridged sultam”, like corresponding twisted
amides, causes a deviation in the geometry of the sulfonamide
group leading to proposed hybridization and geometry
changes at nitrogen, ultimately affecting physical properties.7,8
(3) (a) Drews, J. Science 2000, 287, 1960–1964. (b) Scozzafava, A.;
Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Curr. Med. Chem. 2003, 10,
925–953.
(4) For an extensive list of biologically active sultams, see: (a)
ꢀ
Jimenez-Hopkins, M; Hanson, P. R. Org. Lett. 2008, 10, 2223–2226.
(b) Rolfe, A; Young, K.; Volp, K.; Hanson, P. R. J. Comb. Chem. 2009,
11, 732–738. (c) Jeon, K.; Rayabarappu, D. R.; Rolfe, A.; Hanson, P. R.
Tetrahedron 2009, 65, 4992–5000.
(7) Review: (a) Paquette, L. A. Chemtracts-Org. Chem. 2006, 19, 1–
10. (b) Dura, R. D.; Modolo, I.; Paquette, L. A. J. Org. Chem. 2009, 74,
1982–1987. (c) Dura, R. D.; Modolo, I.; Paquette, L. A. Heterocycles
2007, 74, 145–148. (d) Paquette, L. A.; Dura, R. D.; Fosnaugh, N.;
Stepanian, M. J. Org. Chem. 2006, 71, 8438–8445. (e) Preston, A. J.;
Gallucci, J. C.; Paquette, L. A. J. Org. Chem. 2006, 71, 6573–6578. (f)
Dura, R. D.; Paquette, L. A. J. Org. Chem. 2006, 71, 2456–2459. (g)
Paquette, L. A.; Barton, W. R. S.; Gallucci, J. C. Org. Lett. 2004, 6,
1313–1315. (h) Rassadin, V. A.; Grosheva, D. S.; Tomashevskiy, A. A.;
Sokolov, V. V.; Yufit, D. S.; Kozhushkov, S. I.; de Meijere, A. Eur. J.
Org. Chem. 2010, 3481–3486.
(5) (a) Rolfe, A.; Samarakoon, T. B.; Klimberg, S., V.; Brzozowski,
M.; Neuenswander, B.; Lushington, G. H.; Hanson, P. R. J. Comb.
Chem. 2010, 12, 850–854. (b) Ullah, F.; Samarakoon, T. B.; Rolfe, A.;
Hanson, P. R.; Organ, M. G. Chem.;Eur. J. 2010, 16, 10959–10962. (c)
Samarakoon, T. B.; Hur, M. Y.; Kurtz, R. D.; Hanson., P. R. Org. Lett.
2010, 12, 2182–2185. (d) Rolfe, A.; Smarakoon, T. B.; Hanson, P. R.
Org. Lett. 2010, 12, 1216–1219. (e) Rayabarapu, D. K.; Zhou, A.; Jeon,
K.-O.; Samarakoon, T. B.; Rolfe, A.; Siddiqui, H.; Hanson, P. R.
Tetrahedron 2009, 65, 3180–3188.
(6) (a) N. E. Golantsov, N. E.; Karchava, A. V.; Yurovskaya, M. A.
Chem. Heterocycl. Compd. 2008, 44, 263–294. (b) Suzuki, M.; Kambe,
M.; Tokuyama, H.; Fukuyama, T. Angew. Chem., Int. Ed. 2002, 41,
4686–4688. (c) Rujirawanich, J.; Gallagher, T. Org. Lett. 2009, 11, 5494–
5496.
(8) For reviews of twisted amides, see: (a) Greenberg, A.; Breneman,
C. M.; Liebman, J. F. Amide Linkage: Selected Structural Aspects in
Chemistry, Biochemistry, and Materials Science; Wiley: New York, 2000.
(b) Greenberg, A. Mol. Struct. Energ. 1988, 7, 139–178. (c) Hall, H. K.;
Elshekeil, A. Chem. Rev. 1983, 83, 549–555.
Org. Lett., Vol. 13, No. 19, 2011
5149