Article
On the other hand, incorporation of polar functional
Organometallics, Vol. 30, No. 4, 2011 761
anionic) mechanism,18 the resultant copolymer usually has
poor regularity and less controlled molecular weight or is a
mixture of homopolymers. Therefore, copolymerization of
conjugated dienes and functional monomers in a regio- and
stereospecific manner has been a challenge. Obviously, the
development of new catalysts that show not only specific
selectivity and living character for the polymerization of
dienes but also activity for the polymerization of polar
monomers is required.
On the basis of our recent studies on the (co)polymer-
ization of 1,3-conjugated dienes by using well-defined orga-
no rare-earth-metal catalysts,6a,b,19,20 we designed a new
PNP-tridentate carbazolide ligand to stabilize rare-earth-
metal dialkyl species. Although carbazole derivatives are
used to support low-coordinate metals21a,b and transition
metals,21c-e the multidentate carbazolide transition-metal
complexes were structurally defined only recently,21f-i and
no analogous rare-earth-metal alkyl complexes have yet been
reported.22 To date, the use of carbazolide metal complexes
as polymerization catalysts has been unexplored, although
the catalytic activity for Nozaki-Hiyama and other reac-
tions has been reported.23
groups into nonpolar polymers endows the hydropho-
bic materials with remarkable adhesive, dyeing, moisture
absorption, etc. surface properties, miscibility with other
polymers, and rheological properties.7 To reach this target,
strategies such as modifying the nonpolar polymers with
functional groups8-10 or using nonpolar polymers as macro-
initiators to incorporate polar blocks11 have been adopted.
However, the most efficient and direct method, copolymer-
ization of nonpolar and polar monomers by using coordina-
tion catalysts, has been retarded, as the active metal centers
facilitating the polymerization of nonpolar monomers are
extremely oxophilic and are easily poisoned by polar mono-
mers. The stalemate was broken by the invention of lantha-
nidocenes that initiate the block copolymerization of simple
olefins such as ethylene with MMA (or cyclic esters).12
A
fascinating improvement13-16 is attributed to the recent
discovery of transition-metal-based systems that exhibit
distinguished activity or high incorporation rate of polar
monomers. In contrast, the copolymerization of conjugated
dienes with polar monomers by using coordination catalysts
remains less explored.17 Although such copolymerization
can be accessed by using macroinitiators via an ATRP (or
Herein we report the synthesis and characterization of
unique PNP-pincer carbazolide rare-earth-metal bis(alkyl)
complexes. On activation with organoborate these com-
plexes transferred into corresponding cationic species that
(6) (a) Gao, W.; Cui, D. J. Am. Chem. Soc. 2008, 130, 4984–4991. (b)
Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem.,
Int. Ed. 2007, 46, 1909–1913. (c) Monteil, V.; Spitz, R.; Boisson, C.
Polym. Int. 2004, 53, 576–581. (d) Sugiyama, H.; Gambarotta, S.; Yap,
G. P. A.; Wilson, D. R.; Thiele, S. K. H. Organometallics 2004, 23, 5054–
5061. (e) Arndt, S.; Beckerle, K.; Zeimentz, P. M.; Spaniol, T. P.; Okuda,
J. Angew. Chem., Int. Ed. 2005, 44, 7473–7477. (f) Visseaux, M.; Mainil,
M.; Terrier, M.; Mortreux, A.; Roussel, P.; Mathivet, T.; Destarac, M.
Dalton Trans. 2008, 4558–4561.
(7) (a) Padwa, A. R. Prog. Polym. Sci. 1989, 14, 811–833. (b) Patil,
A. O.; Schulz, D. N.; Novak, B. M. Functional Polymers: Modern
Synthetic Methods and Novel Structures; American Chemical Society:
Washington, DC, 1998; ACS Symposium Series 704.
(8) (a) Dong, J.; Hu, Y. Coord. Chem. Rev. 2006, 250, 47–65. (b)
Coates, G. W.; Hustad, P. D.; Reinartz, S. Angew. Chem., Int. Ed. 2002,
41, 2236–2257. (c) Yanjarappa, M. J.; Sivaram, S. Prog. Polym. Sci.
2002, 27, 1347–1398. (d) Chung, T. C. Prog. Polym. Sci. 2002, 27, 39–85.
(9) Amin, S. B.; Marks, T. J. Angew. Chem., Int. Ed. 2008, 47, 2006–
2025 and references therein.
(10) (a) Wang, J.; Zhang, K.; Ye, Z. Macromolecules 2008, 41, 2290–
2293. (b) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267–268. (c) Chen, G.; Ma, X. S.; Guan, Z. J. Am. Chem. Soc.
2003, 125, 6697–6704.
(11) (a) Kaneyoshi, H.; Inoue, Y.; Matyjaszewski, K. Macromole-
cules 2005, 38, 5425–5435. (b) Tzeng, F.; Lin, M.; Wu, J.; Kuo, J.; Tsai,
J.; Hsiao, M.; Chen, H.; Cheng, S. Z. D. Macromolecules 2009, 42, 3073–
3085.
(12) (a) Desurmont, G.; Tokimitsu, T.; Yasuda, H. Macromolecules
2000, 33, 7679–7681. (b) Yasuda, H.; Furo, M.; Yamamoto, H.;
Nakamura, A.; Miyake, S.; Kibino, N. Macromolecules 1992, 25,
5115–5116. (c) Yasuda, H. J. Organomet. Chem. 2002, 647, 128–138.
(13) Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479–1494 and
references therein.
ꢀ €
ꢀ
(18) (a) Heuschen, J.; Jerome, R.; Teyssie, Ph. Macromolecules 1981,
14, 242–246. (b) Wang, H.; Chen, X.; Pan, C. Eur. Polym. J. 2007, 43,
1905–1915. (c) Bonnet, F.; Barbier-Baudry, D.; Dormond, A.; Visseaux,
M. Polym. Int. 2002, 51, 986–993. (d) Balsamo, V.; Von Gyldenfeldt, F.;
Stadler, R. Macromol. Chem. Phys. 1996, 197, 1159–1169. (e) Wang, Y.;
Hillmyer, M. A. Macromolecules 2000, 33, 7395–7403. (f) Rozenberg,
B. A.; Estrin, Y. I.; Estrina, G. A. Macromol. Symp. 2000, 153, 197–208.
(g) Balsamo, V.; Muller, A. J.; Gildenfeldt, F.; Stadler, R. Macromol.
Chem. Phys. 1998, 199, 1063–1072. (h) Gromada, J.; Pichon, L.;
Mortreux, A.; Leising, F.; Carpentier, J. F. J. Organomet. Chem.
2003, 683, 44–55. (i) Amgoune, A.; Thomas, C. M.; Balnois, E.;
Grohens, Y.; Lutz, P. J.; Carpentier, J. F. Macromol. Rapid Commun.
2005, 26, 1145–1150.
(19) (a) Zhang, L.; Nishiura, M.; Yuki, M.; Luo, Y.; Hou, Z. Angew.
Chem., Int. Ed. 2008, 47, 2642–2645. (b) Zhang, H.; Luo, Y.; Hou, Z.
Macromolecules 2008, 41, 1064–1066. (c) Yu, N.; Nishiura, M.; Li, X.;
Xi, Z.; Hou, Z. Chem. Asian J. 2008, 3, 1406–1414. (d) Hou, Z.; Luo, Y.;
Li, X. J. Organomet. Chem. 2006, 691, 3114–3121. (e) Li, X.; Nishiura,
M.; Hu, L.; Mori, K.; Hou, Z. J. Am. Chem. Soc. 2009, 131, 13870–
13882.
(20) (a) Yang, Y.; Wang, Q.; Cui, D. J. Polym. Sci., Part A: Polym.
Chem. 2008, 46, 5251–5262. (b) Yang, Y.; Liu, B.; Lv, K.; Gao, W.; Cui,
D.; Chen, X.; Jing, X. Organometallics 2007, 26, 4575–4584. (c) Li, D.;
Li, S.; Cui, D.; Zhang, X. Organometallics 2010, 29, 2186–2193. (d) Jian,
Z.; Cui, D.; Hou, Z.; Li, X. Chem. Commun. 2010, 46, 3022–3024. (e) Lv,
K.; Cui, D. Organometallics 2010, 29, 2987–2993.
(21) (a) Spitzmesser, S. K.; Gibson, V. C. J. Organomet. Chem. 2003,
673, 95–101. (b) Coombs, N. D.; Stasch, A.; Cowley, A.; Thompson,
A. L.; Aldridge, S. Dalton Trans. 2008, 332–337. (c) Riley, P. N.;
Fanwick, P. E.; Rothwell, I. P. Dalton Trans. 2001, 181–187. (d) Gibson,
V. C.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Dalton Trans.
2003, 2718–2727 and references therein. (e) Profilet, R. D.; Fanwick,
P. E.; Rothwell, I. P. Angew. Chem., Int. Ed. 1992, 31, 1261–1263. (f)
Britovsek, G. J. P.; Gibson, V. C.; Hoarau, O. D.; Spitzmesser, S. K.;
White, A. J. P.; Williams, D. J. Inorg. Chem. 2003, 42, 3454–3465. (g)
Moser, M.; Wucher, B.; Kunz, D.; Rominger, F. Organometallics 2007,
26, 1024–1030. (h) Gaunt, J. A.; Gibson, V. C.; Haynes, A.; Spitzmesser,
S. K.; White, A. J. P.; Williams, D. J. Organometallics 2004, 23, 1015–
1023. (i) Wucher, B.; Moser, M.; Schumacher, S. A.; Rominger, F.;
Kunz, D. Angew. Chem., Int. Ed. 2009, 48, 4417–4421.
(14) Terao, H.; Ishii, S.; Mitani, M.; Tanaka, H.; Fujita, T. J. Am.
Chem. Soc. 2008, 130, 17636–17637.
(15) (a) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich,
S. K.; Grubbs, R. H.; Bansleben, D. A. Science 2000, 287, 460–462. (b)
Li, X.; Li, Y.; Li, Y.; Chen, Y.; Hu, N. Organometallics 2005, 24, 2502–
2510. (c) Rodriguez, B. A.; Delferro, M.; Marks, T. J. J. Am. Chem. Soc.
2009, 131, 5902–5919. (d) Baugh, L. S.; Sissano, J. A.; Kacker, S.;
Berluche, E.; Stibrany, R. T.; Schulz, D. N.; Rucker, S. P. J. Polym. Sci.,
Part A: Polym. Chem. 2006, 44, 1817–1840.
(16) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100,
1169–1203.
(17) For the only reported trans-1,4 PIP-b-PCL copolymer prepared
with a coordination catalyst, see: (a) Barbier-Baudry, D.; Bonnet, F.;
Dormond, A.; Finot, E.; Visseaux, M. Macromol. Chem. Phys. 2002,
203, 1194–1200. The cis-1,4 PBD-b-PCL copolymer was obtained by
lanthanide/AlHiBu3/AlClEt2 in a small amount mixed with polybuta-
diene and polycaprolactone; see: (b) Friebe, L.; Nuyken, O.; Windisch,
H.; Obrecht, W. Macromol. Mater. Eng. 2003, 288, 484–494.
(22) When we were writing this paper, a related NNN-tridentate
bis(diphenylphosphinimino) carbazolide rare-earth-metal C-H activa-
tion complex was reported; see: Johnson, K. R. D.; Hayes, P. G.
Organometallics 2009, 28, 6352–6361.
(23) (a) Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc. 2003,
125, 1140–1141. (b) Inoue, M.; Nakada, M. Org. Lett. 2004, 6, 2977–
2980.