V. B. C. Figueira et al. / Tetrahedron Letters 51 (2010) 2029–2031
2031
Table 2
Functional desymmetrization of 1,3-dioximes derivatives using strong electrophiles
Entry
1,3-Dioxime
Electrophile
Temp (°C)
Solvent/time (h)
Productsa
Yieldb (%)
1
2
3
4
5
6
1a
1a
1b
1b
1c
1c
p-CH3C6H4SO2Cl
(EtO)2P(O)Cl
p-CH3C6H4SO2Cl
(EtO)2P(O)Cl
p-CH3C6H4SO2Cl
(EtO)2P(O)Cl
0 to rt
0 to rt
0 to rt
0 to rt
0 to rt
0 to rt
THF/12
THF/6.5
THF/12
THF/5
THF/12
THF/6
6a
7a
6b
7b
6c
7c
98
60
74
70
73
81
a
All the products characterized by NMR, IR, and mass spectrometry.
Yield refers to pure products after chromatography and/or crystallization.
b
tion. Other 1,3-dioximes, such as the substituted 1b,10 (Table 1, en-
tries 3 and 4) as well as five-membered ring oximes, such as 1c,11
(entries 5 and 6) reacted in a similar fashion.
With more reactive electrophiles, such as p-toluenesulfonyl
chloride, reaction with 1b gave instead compound 6b most proba-
bly via the intermediates 4b and 5b [Scheme 2(b)]. Introduction of
the halogen at position 2 occurs now with simultaneous cleavage
of the N–O bond of one the oximes derivatives.
The X-ray structure of 6b, shown in the Figure 1, confirms the
structure attributed and reveals an interesting crystal packing with
strong interactions among the aromatic rings (p–p) as well as in be-
tween thesulfonyl group of one moleculeand the amino groupof an-
other, leading to a ladder-type structure.12 Other similar results 7a–
c, obtained with ClP(O)(OEt)2, are collected in Table 2 (entries 2, 4
and 6) [cf. Scheme 2(c)]. In conclusion the yields of the compounds
obtained range from good to excellent and the ease of the reaction
makes it suitable for application to a wide variety of carbocycles,
intermediates in the synthesis of more complex materials.
4. Part of this work was presented in the XXI National Meeting of the Portuguese
Chemical Society, Oporto, June 2008.
5. Dannenberg, H.; Meyer, E. Chem. Ber. 1969, 102, 2384–2391; Bhatt, M. V.; Rao,
C. G.; Rengaraju, S. Chem. Commun. 1976, 103a; Bhatt, M. V.; Reddy, G. S.
Tetrahedron Lett. 1980, 21, 2359–2360; Reddy, G. S.; Bhatt, M. V. Indian J. Chem.
Sect. B: Org. Chem. 1980, 19, 213–215.
6. Reis, L. V.; Lobo, A. M.; Prabhakar, S.; Duarte, M. P. Eur. J. Org. Chem. 2003, 190–
208.
7. Reis, L. V.; Lobo, A. M.; Prabhakar, S. Tetrahedron Lett. 1994, 35, 2747–2750.
8. Heilbron, H.; Bunburry, L. W.. In Dictionary of Organic Compounds; Eyre &
Spottiswood: New York, 1953; Vol. 2.
9. Experimental procedure: Table 1, entry 1—to a solution of dioxime 1a (142 mg,
1 equiv) in dry distilled THF, under inert atmosphere, was added at rt with
stirring i-Pr2NEt (3 equiv). The mixture was then cooled in an ice-bath and
benzoyl chloride (3 equiv) carefully added. The reaction was allowed to reach
room temperature and showed the full consumption of the starting dioxime
after 2 h. The amine salt was removed by filtration and the resulting solution
was evaporated under vacuum, the residue of 2a redissolved in CH2Cl2, washed
with brine, dried and heated in toluene t 110 °C for 22 h to afford after work-up
and purification by preparative TLC (SiO2, CH2Cl2/n-hexane, 1:1)
crystalline solid (yield 75%) of 3a: mp 164–165 °C (CH2Cl2:n-hexane); IR (KBr)
: 3419, 3067, 1750, 1689, 1645, 1599 cmÀ1 1H NMR (400 MHz, CDCl3) dH:
a white
t
;
1.99 (2H, m), 2.92 (2H, t, J = 6.4 Hz), 3.26 (2H, t, J = 6.0 Hz), 7.39–7.68 (9H, m,
ArH), 7.71 (2H, d, J = 7.3 Hz), 8.02 (2H, d, J = 7.2 Hz), 8.11 (1H, br s), 8.24 (2H, d,
J = 8.4 Hz, ArH) ppm; 13C NMR (CDCl3) selected dC: 163.23, 164.42, 165.04 ppm.
Calcd C27H22N2O5: C, 71.35; H, 4.88; N, 6.16. Found: C, 71.29; H, 4.97; N, 6.10.
Table 2, entry 4—to a solution of dioxime 1b (170 mg, 1 equiv) in dry destilled
THF (5 ml), under inert atmosphere, was added at rt with stirring i-Pr2NEt
(3 equiv). The mixture was then cooled in an ice-bath and diethyl
chlorophosphate (3 equiv) carefully added. The reaction was allowed to reach
room temperature and showed the full consumption of the starting dioxime
after 5 h. The amine salt was removed by filtration and the resulting solution
was evaporated under vacuum, the residue dissolved in CH2Cl2, washed with
brine, dried and the product purified by preparative TLC (SiO2, AcOEt) to give a
Acknowledgments
We thank the Foundation for Science and Technology (Lisbon,
Portugal) for partial financial support and for research fellowships
(to V.B.C.F. and R.V.). The bilateral Portugal–Spain Cooperation
Agreement—AI/E-59/06—is also thanked for financing the stay in
the Portuguese Laboratory of A.G.E. It is a pleasure to record
our gratitude to Ms. Luz Fernandes and Ms. Carla Rodrigues of
REQUIMTE Analytical Services Laboratories for, respectively, mass
spectra and elemental analyses.
clear light-yellow oil (214 mg, yield 70%) of 7b: IR (KBr)
m
: 3326, 3208, 2961,
1633, 1600, 1557, 1470, 1386, 1367, 1258, 1165, 1034 cmÀ1
;
1H NMR
(400 MHz, CDCl3) dH: 1.04 (6H, s), 1.36 (6H, t, J = 7.0 Hz), 2.21 (2H, s), 2.59
(2H, s), 4.21–4.29 (4H, m), 4.56 (2H, br s) ppm; 13C NMR (CDCl3) dC: 14.21 (2C),
19.70, 27.41, 27,56, 37.12, 46.51, 59.84 (2C), 124.65, 129.8, 166.75 ppm; 31P
NMR (CDCl3) dP: À0.137 ppm; EI–MS m/z: 324 (8) [M]+), 289 (3), 188 (3), 174
(14), 172 (48), 137 (53), 116 (62), 99 (100). Calcd. C12H22ClN2O4P: C, 44.38; H,
6.83; N, 8.63. Found: C, 44.56; H, 6.69; N, 8.39. Table 2, entry 3—a similar
protocol but using instead p-toluenesulfonyl chloride afforded after 12 h a
white crystalline solid (yield 74%) of 6b: mp 148–150 °C (CH2Cl2/n-hexane); IR
References and notes
1. For TamifluÒ synthesis, see: Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M.
W.; Chapman, H. H.; Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.;
Schultze, L. M.; Yu, R. H.; Zhang, L. J. Org. Chem. 1998, 63, 4545–4550;
Federspiel, M.; Fischer, R.; Hennig, M.; Mair, H.-J.; Oberhauser, T.; Rimmler, G.;
Albiez, T.; Bruhin, J.; Estermann, H.; Gandert, C.; Gockel, V.; Gotzo, S.;
Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper, S.; Rockel-Stabler, O.;
Trussardi, R.; Zwahlen, A. G. Org. Process Res. Dev. 1999, 3, 266–274; Yeung,
Y.-Y. H. S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310–6311; Fukuta, Y.; Mita,
T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312–6313;
Farina, V.; Brown, J. D. Angew. Chem., Int. Ed. 2006, 45, 7330–7334; Shibasaki,
M.; Kanai, M. Eur. J. Org. Chem. 2008, 1839–1850; Ishikawa, M.; Suzuki, T.;
Hayashi, Y. Angew. Chem., Int. Ed. 2009, 48, 1304–1307; Karpf, M.; Trussardi, R.
Angew. Chem., Int. Ed. 2009, 48, 5760–5762; Nie, L.-D.; Shi, X.-X.; Ho, K. H.; Lu,
W.-D. J. Org. Chem. 2009, 74, 3970–3973; Magano, J. Chem. Rev. 2009, 109,
4398–4438. and references cited therein.
(KBr)
m
: 3472, 3371, 3203, 2960, 1633, 1595, 1469, 1359, 1278, 1190, 1176,
1122 cmÀ1
;
1H NMR (400 MHz, CDCl3) dH: 0.99 (6H, s), 2.16 (2H, s), 2.42 (3H, s),
2.51 (2H, s), 4.64 (2H, br s), 7.31 (2H, d, J = 8.2 Hz), 7.91 (2H, J = 8.2 Hz). Calcd.
C15H19ClN2O3: C, 52.55; H, 5.59; N, 8.17. Found: C, 52.67; H, 5.39; N, 8.32.
All new compounds gave correct microanalyses and/or HRMS. Spectral data for
selected compounds: dH (CDCl3), 7a: 1.38 (6H, t, J = 7.12 Hz), 2.24 (2H, t,
J = 6.3 Hz), 2.51 (2H, t, J = 6.9 Hz), 2.76 (2H, quint, J = 6.4 Hz), 4.19–4.25 (4H, m),
4.68 (2H, br s); 6a: 1.75–1.81 (2H, quint, J = 6.3 Hz), 2.31–2.35 (2H, t, J = 6.2 Hz),
2.43 (3H, s), 2.68–2.71 (2H, t, J = 6.5 Hz), 7.32 (2H, d, J = 8.1 Hz), 7.93 (2H, d,
J = 8.2 Hz); 8.02 (2H, d, J = 7.2 Hz), 8.11 (1H, br s), 8.24 (2H, d, J = 8.4 Hz); 3b:
1.92 (2H, m), 2.14 (3H, s), 2.16 (3H, s), 2.27 (3H, s), 2.51 (2H, t, J = 6.3 Hz), 2.72
(2H, t, J = 5.8 Hz) 8.05 (1H, br s); 3f: 2.12 (3H, s), 2.16 (3H, s), 2.29 (3H, s), 3.10
(2H, m), 3.52 (2H, m), 8.90 (1H, br s).
2. Li, S.-W.; Batey, R. A. Chem. Commun. 2007, 3759–3761. and references cited
therein.
10. Marsman, A. W.; van Walree, C. A.; Havenith, R. W. A.; Jenneskens, L. W.; Lutz,
M.; Spek, A. L.; Lutz, E. T. G.; van der Maas, J. H. J. Chem. Soc., Perkin Trans. 2
2000, 501–510.
3. (a) Robertson, G. M.. In Comprehensive Organic Functional Group Transformations;
Katritzsky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Oxford: Pergamon, 1995; Vol. 3,
pp 425–441; (b) Kotali, A.; Papageorgiu, V. P. Org. Prep. Proced. Int. 1991, 23, 595–
610; (c) Bigdeli, M.; Rahmati, A. J. Chem. Res. 2005, 605–607; (d) Zaitsev, A. B.;
Schmidt, E. Y.; Mikhaleva, A. M.; Afonin, A. V.; Ushakov, I. A. Chem. Heterocycl.
Compd 2005, 41, 722–729.
11. Aldrich’s reagents catalogue 2007.
12. CCDC 756960 contains the crystallographic data which can be obtained free of
@ccdc.cam.ac.uk, or by contacting CCDC, UK; fax: +44 1223 336033.