N. R. Miller et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2174–2177
2177
Acknowledgments
The authors thank the NIH, NIMH and the MLSCN for funding of
the Vanderbilt Screening Center for GPCRs, Ion Channels
&
Transporters (3U54MH074427), the Chemistry Supplement
(3U54MH074427-02S1) and the XO1 (1XO1MH077606-01) M1
antagonist screening application which enabled this work. The
authors also wish to thank the second generation of the MLSCN,
coined the MLPCN, and the Vanderbilt Specialized Chemistry
Center (U54MH084659-01).
References and notes
1. (a) Bonner, T. I.; Buckley, N. J.; Young, A. C.; Brann, M. R. Science 1987, 237, 527;
(b) Bonner, T. I.; Young, A. C.; Buckley, N. J.; Brann, M. R. Neuron 1988, 1, 403.
2. Felder, C. C.; Bymaster, F. P.; Ward, J.; DeLapp, N. J. Med. Chem. 2000, 43, 4333.
3. Bymaster, F. P.; McKinzie, D. L.; Felder, C. C.; Wess, J. Neurochem. Res. 2003, 28, 437.
4. Birdsall, N. J. M.; Farries, T.; Gharagozloo, P.; Kobayashi, S.; Lazareno, S.;
Sugimoto, M. Mol. Pharmacol. 1999, 55, 778.
5. Eglen, R. M.; Choppin, A.; Dillon, M. P.; Hedge, S. Curr. Opin. Chem. Biol. 1999, 3, 426.
6. Birdsall, N. J. M.; Nathanson, N. M.; Schwarz, R. D. TRENDS Pharm. Sci. 2001, 22,
215.
7. (a) Burke, R. E. Mov. Disord. 1986, 1, 135; (b) Buckley, N. J.; Bonner, T. I.;
Buckley, C. M.; Brann, M. R. Mol. Pharmacol. 1989, 35, 469; (c) Walebroeck, M.;
Tastenoy, M.; Camus, J.; Christophe, J. Mol. Pharmacol. 1990, 36, 267; (d) Dei, S.;
Bellucci, C.; Buccioni, M.; Ferraroni, M.; Guandalini, L.; Manetti, L.; Martini, E.;
Marucci, G.; Matucci, R.; Nesi, M.; Romanelli, M. N.; Scapecchi, S.; Teodori, E. J.
Med. Chem. 2007, 50, 1409.
8. Hammer, R.; Berrie, C. P.; Birdsall, N. J. M.; Burgen, A. S. V.; Hulme, E. C. Nature
1980, 283, 90.
9. Bradley, K. N. Pharmacol. Ther. 2000, 85, 87.
10. For information on the Molecular Library Production Center Network see:
Figure 3. CRCs for M1, M3, and M5 for (A) compound 8e (M1 IC50 = 350 nM) and (B)
compound 8h (M1 IC50 = 490 nM), showing ꢀninefold functional selectivity versus
M3 and M5.
11. Lewis, L. M.; Sheffler, D.; Williams, R.; Bridges, T. A.; Kennedy, J. P.; Brogan, J. T.;
Mulder, M. J.; Williams, L.; Nalywajko, N. T.; Niswender, C.; Weaver, C. D.;
Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2008, 18, 885.
12. Sheffler, D. J.; Williams, R.; Bridges, T. M.; Lewis, L. M.; Xiang, Z.; Zheng, F.;
Kane, A. S.; Byum, N. E.; Jadhav, S.; Mock, M. M.; Zheng, F.; Lewis, L. M.; Jones, C.
K.; Niswender, C. M.; Weaver, C. D.; Conn, P. J.; Lindsley, C. W.; Conn, P. J. Mol.
Pharmacol. 2009, 76, 356.
13. Kennedy, J. P.; Williams, L.; Bridges, T. M.; Daniels, R. N.; Weaver, D.; Lindsley,
C. W. J. Comb. Chem. 2008, 10, 345.
14. Leister, W. H.; Strauss, K. A.; Wisnoski, D. D.; Zhao, Z.; Lindsley, C. W. J. Comb.
Chem. 2003, 5, 322.
15. Details of the calcium mobilization assays: Chinese Hamster Ovary (CHO-K1)
cells stably expressing human (h) M1, hM3, and hM5 were used for calcium
mobilization assays. hM2 and hM4 were adapted to this assay and signaling
pathway after stably transfecting Gqi5 chimeric G protein. To measure agonist-
induced calcium mobilization and determine effect of novel compounds, stable
muscarinic cell lines plated overnight in Costar 96-well cell culture plates
(Corning) were incubated with 50 lL of 2 lM Fluo-4 AM diluted in assay buffer
[HBSS (Invitrogen) supplemented with 20 mM HEPES and 2.5 mM probenecid,
pH 7.4] for 45 min at 37 °C. Dye was then removed and replaced with assay
buffer. Cells were pre-incubated with 10
curve of novel compound, followed by
l
a
M or a concentration–response
sub-maximal concentration of
acetylcholine or carbachol. The signal amplitude was first normalized to
baseline and then expressed as a percentage of the maximal response to
acetylcholine.
Scheme 2. Library synthesis of second generation analogs 9a–f, 10a–f, 11a–f and
12a–f. All library compounds were purified by mass-guided HPLC to >98% purity.14