crystals of 5 (75 mg, 62%) suitable for X-ray diffraction were
isolated. mp 75 1C (dec.). Found: C, 30.0; H, 2.2; N, 3.4.
C11H9AuClNOS requires C, 30.3; H, 2.1; N, 3.2%. dH
(400 MHz, CD2Cl2) 9.21 (1 H, br s, CH thiazole), 8.14
(2 H, m, o-Ph), 7.64 (1 H, m, p-Ph), 7.54 (2 H, m, m-Ph)
and 4.84 (3 H, s, d, 1JCH 150.4, OMe). dC (101 MHz, CD2Cl2)
248.6 (s, carbene), 183.1 (s, C2 thiazole), 168.9 (br s, C4
thiazole), 144.4 (br s, C5 thiazole), 134.1 (s, p-Ph), 132.7
(s, i-Ph), 130.1 (s, m-Ph), 128.6 (s, o-Ph) and 71.7 (s, OMe).
m/z 386 [4%, (M–Cl–CH3 + H)+], 377 (3) and 358
[3, (M–Cl–CH3–CO + H)+].
43.5; H, 2.7; N, 7.8. C22H16ClN3O2SW requires C, 43.2; H,
2.8; N, 8.0%. dH (400 MHz, CDCl3) 9.09 (4 H, m, o-py), 7.91
(2 H, m, o-Ph), 7.83 (2 H, tt, 3JHH 7.65, 4JHH 1.71, p-py), 7.79
(1 H, s, CH thiazole), 7.44 (3 H, m, m/p-Ph) and 7.36 (4 H, m,
m-py). dC (101 MHz, CDCl3) 240.8 (s, d, 1JWC 205.7, carbyne),
1
220.1 (s, d, JWC 168.8, CO), 165.7 (s, C2 thiazole), 152.7
(s, o-py), 148.0 (s, C4/C5 thiazole), 143.9 (s, C5/C4 thiazole),
138.4 (s, p-py), 133.4 (s, i-Ph), 130.2 (s, p-Ph), 129.0 (s, m-Ph),
126.4 (s, o-Ph) and 125.2 (s, m-py). nmax/cmꢁ1 1972vs (A0 CO)
and 1870vs (A0 0 CO). m/z 606 [2%, (M + H)+], 605 (3, M+),
577 [16, (M–CO)+], 570 [7, (M–Cl)+], 549 [15, (M–2CO)+],
527 [3, (M–C5H5N + H)+], 526 [1, (M–C5H5N)+], 498
[5, (M–C5H5N–CO)+], 471 [2, (M–C5H5N–2CO + H)+],
470 [4, (M–C5H5N–2CO)+] and 367 {18, [W(RCH)Cl-
(C5H5N)(CO)2]+}.
cis-Dicarbonylchloro{[2-(1-piperidinyl)thiazol-5-yl]methylidyne}-
cis-bis(pyridine)tungsten, 6a. Two Schlenk tubes were prepared
containing the freshly prepared Li+-analogue of 1a (499 mg,
0.95 mmol) and (Cl3CO)2CO (104 mg, 0.35 mmol, 1.1 mol eq.)
and CH2Cl2 (30 cm3 and 10 cm3, respectively). After cooling to
ꢁ78 1C, the triphosgene solution was transferred to the lithium
acyl suspension via a Teflon cannula; the colour immediately
changed to dark red. Stirring was continued for 1.5 h at
ꢁ78 1C and 30 min at 0 1C. Freshly distilled pyridine
(3 cm3) was added with a glass pipette and stirring commenced
at room temperature for 2.3 h. Excessive triphosgene was
quenched with several drops of MeOH and all volatiles were
removed in vacuo. The crude product was subjected to inert
flash chromatography (7 ꢃ 5 cm, ꢁ30 1C), eluting with
CH2Cl2 (100 cm3), CH2Cl2–MeOH (19 : 1; 50 cm3) and
CH2Cl2–MeOH (16 : 1; 80 cm3). The orange-brown fraction
yielded 285 mg of 6a. Crystals suitable for X-ray diffraction
were grown by layering a CH2Cl2 solution with hexane. mp
73 1C (dec. with evolution of gas). Found: C, 41.3; H, 3.4; N,
9.2. C21H21ClN4O2SW requires C, 41.2; H, 3.45; N, 9.1%. dH
(300 MHz, CDCl3) 9.08 (4 H, m, o-py), 8.69 (1 H, br s, CH
Acknowledgements
The authors would like to thank the Alexander von Humboldt
Foundation (HGR and SC) and the South African National
Research Foundation for financial support, and Mintek for
the generous loan of gold.
Notes and references
1 J. Barluenga, Pure Appl. Chem., 2002, 74, 1317–1325; J. Barluenga
and S. Martınez, ARKIVOC (Gainesville, FL, U.S.), 2006,
129–147.
2 Y. M. Terblans, H. M. Roos and S. Lotz, J. Organomet. Chem.,
1998, 566, 133–142; M. Landman, H. Gorls and S. Lotz, Eur. J.
Inorg. Chem., 2001, 233–238; M. Landman, H. Gorls and S. Lotz,
J. Organomet. Chem., 2001, 617–618, 280–287.
3 D. I. Bezuidenhout, E. van der Watt, D. C. Liles, M. Landman and
S. Lotz, Organometallics, 2008, 27, 2447–2456.
4 I. Y. Jung, Y. J. Yoon, K. S. Rhee, G. C. Shin and S. C. Shin,
Chem. Lett., 1994, 859–862.
3
4
thiazole), 7.81 (2 H, tt, JHH 7.65, JHH 1.67, p-py), 7.33
(4 H, m, m-py), 3.52 (4 H, m, NCH2) and 1.73 (6 H, m,
NCH2(CH2)3). dC (75.4 MHz, CDCl3) 245.1 (s, carbyne),
5 C. Crause, H. Gorls and S. Lotz, Dalton Trans., 2005, 1649–1657.
6 J. Barluenga, S. K. Nandy, Y. R. S. Laxmi, J. R. Suarez, I. Merino,
J. Florez, S. Garcıa-Granda and J. Montejo-Bernardo, Chem.–Eur. J.,
2003, 9, 5725–5736.
1
220.9 (s, d, JWC 170.7, CO), 169.7 (s, C2 thiazole), 152.8
7 H. G. Raubenheimer, G. J. Kruger, A. van A. Lombard,
L. Linford and J. C. Viljoen, Organometallics, 1985, 4, 275–284.
8 H. G. Raubenheimer, Y. Stander, E. K. Marais, C. Thompson,
G. J. Kruger, S. Cronje and M. Deetlefs, J. Organomet. Chem.,
1999, 590, 158–168.
9 H. G. Raubenheimer, A. du Toit, M. du Toit, J. An, L. van
Niekerk, S. Cronje, C. Esterhuysen and A. M. Crouch, Dalton
Trans., 2004, 1173–1180.
(s, o-py), 149.6 (br s, C4/C5 thiazole), 142.2 (s, C5/C4
thiazole), 138.1 (s, p-py), 125.0 (s, m-py), 49.5 (s, NCH2), 25.1
(s, NCH2CH2CH2) and 24.0 (s, NCH2CH2CH2). nmax/cmꢁ1
1965vs (A0 CO) and 1877vs (A00 CO). m/z 613 [1%,
(M + H)+], 612 (1, M+), 584 [3, (M–CO)+], 577 [2, (M–Cl)+],
505 [3, (M–C5H5N–CO)+] and 477 [3, M–C5H5N–2CO)+].
10 V. N. Kalinin, O. S. Shilova, P. V. Petrovskii and A. I. Kovredov,
Metalloorg. Khim., 1989, 2, 997–1001; Y. H. Choi, B. S. Kang,
Y.-J. Yoon, J. Kim and S. C. Shin, Synth. Commun., 1995, 25,
2043–2050.
11 J. Barluenga, F. Fernandez-Marı, A. L. Viado, E. Aguilar,
B. Olano, S. Garcıa-Granda and C. Moya-Rubiera, Chem.–Eur. J.,
1999, 5, 883–896.
12 J. Heinicke, K. Steinhauser, N. Peulecke, A. Spannenberg,
P. Mayer and K. Karaghiosoff, Organometallics, 2002, 21,
912–919.
13 S. Lotz, M. Landman, H. Gorls, C. Crause, H. Nienaber and
A. Olivier, Z. Naturforsch., B: Chem. Sci., 2007, 62, 419–426.
14 K. H. Dotz and H. Larbig, J. Organomet. Chem., 1992, 433,
115–125.
15 J. H. Davis, Jr, C. M. Lukehart and L. Sacksteder, Organometallics,
1987, 6, 50–55; M. Sekino, M. Sato, A. Nagasawa and K. Kikuchi,
Organometallics, 1994, 13, 1451–1455.
16 E. O. Fischer and T. Selmayr, Z. Naturforsch., B: Anorg.
Chem. Org. Chem., 1977, 32, 105–107; S. Anderson, D. J.
Cook and A. F. Hill, J. Organomet. Chem., 1993, 463, C3–C4;
cis-Dicarbonylchloro[(2-phenylthiazol-5-yl)methylidyne]-cis-
bis(pyridine)tungsten, 6b. The compound was prepared
following the procedure described for 6a, employing 1b
(1.015 g, 1.73 mmol) and (Cl3CO)2CO (208 mg, 0.70 mmol,
1.2 eq.). After warming to room temperature, a freshly
t
distilled 2 : 1 mixture of pyridine and BuOH (5 cm3) was
added via a glass pipette. The crude product was purified by
inert flash chromatography (5 ꢃ 5 cm, ꢁ30 1C), eluting with
CH2Cl2 (80 cm3), CH2Cl2–MeCN (19 : 1; 100 cm3) and
CH2Cl2–MeCN (9 : 1; 100 cm3), yielding 562 mg (54%) of a
red oil. Trituration with diethyl ether and drying in
high vacuum afforded an orange foam. Crystals of the
dichloromethane solvate suitable for X-ray diffraction were
obtained from a CH2Cl2 solution layered with hexane. mp
(6bꢂCH2Cl2) 84 1C (dec. with evolution of gas). Found: C,
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
468 | New J. Chem., 2010, 34, 458–469