5050 Inorganic Chemistry, Vol. 49, No. 11, 2010
Bhaumik et al.
as a sensor, metal fragments can be used as reporter units
for modulating a signal, usually color, fluorescence, or
electrochemical potentials, as a result of host-guest inte-
raction.3,4,6 In recent years, the development of multi-
channel sensors has emerged as a topic of intensive
studies.2-8 Inasmuch as ruthenium(II) polypyridine com-
plexes are known to display unique photophysical and
redox properties,13-17 a number of ruthenium(II) poly-
pyridine-based receptors have been designed as ion
sensors,18-23 although such sensors for anions are rela-
tively few. In contrast to tris(bidentate) complexes, struc-
turally more appealing [Ru(tpy)2]2þ type complexes give
rod-like assemblies when substituted at the 40 position
of the tpy ligands.24-27 However, usually such complexes
are practically non-luminescent at room temperature and
their excited state lifetime (τ = 0.25 ns)28 is also very short,
and therefore these are the major deterrents for using them
to act as photosensitizers. Consequently, much effort
has been devoted to designing and synthesizing triden-
tate polypyridine ligands that can produce ruthenium(II)
complexes with enhanced emission quantum yields and
excited-state lifetimes. Most of the approaches aim to
increase the energy gap between the radiative 3MLCT
3
3
and quenching MC states. Stabilization of the MLCT
state can be achieved interalia by substitution of the tpy
ligands by electron-withdrawing groups,29 introducing
a coplanar hetero-aromatic moiety,30 incorporation of
an organic chromophore, etc. Indeed, such approaches
have produced complexes that have longer emission life-
times compared to the parent compounds.31-33 A second
(13) Meyer, T. J. Pure Appl. Chem. 1986, 58, 1193–1206.
(14) (a) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser,
P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85–277. (b) Balzani, V.;
Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759–
834.
(15) Sauvage, J.-P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.; Coudret,
C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev. 1994,
94, 993–1019.
3
approach is to destabilize the MC state by using cyclo-
metalated ligands.34-36 One can also modify the terpyri-
dine directly, by replacing the pyridines with other
heterocyclic rings to enlarge the bite angle of the tridentate
ligand.37 Although the spectroscopic and electrochemical
properties of a few ruthenium(II) complexes containing
(16) Baranoff, E.; Collin, J. P.; Flamigni, L.; Sauvage, J.-P. Chem. Soc.
Rev. 2004, 33, 147–155.
(17) (a) Baitalik, S.; Wang, X.; Schmehl, R. H. J. Am. Chem. Soc. 2004,
€
126, 16304–16305. (b) Baitalik, S.; Florke, U.; Nag, K. Inorg. Chem. 1999, 38,
(28) Winkler, J. R.; Netzel, T.; Creutz, C.; Sutin, N. J. Am. Chem. Soc.
1987, 109, 2381–2392.
€
3296–3308. (c) Baitalik, S.; Florke, U.; Nag, K. J. Chem. Soc., Dalton Trans.
€
1999, 719–717. (d) Baitalik, S.; Bag, P.; Florke, U.; Nag, K. Inorg. Chim. Acta
(29) (a) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.;
Thompson, A. M. W. C. Inorg. Chem. 1995, 34, 2759–2767. (b) Constable,
E. C.; Cargill Thompson, A. M. W.; Armaroli, N.; Balzani, V.; Maestri, M.
Polyhedron 1992, 11, 2707–2709. (c) Wang, J.; Fang, Y. Q.; Hanan, G. S.;
Loiseau, F.; Campagna, S. Inorg. Chem. 2005, 44, 5–7.
(30) (a) Fang, Y. Q.; Taylor, N. J.; Laverdiere, F.; Hanan, G. S.; Loiseau,
F.; Nastasi, F.; Campagna, S.; Nierengarten, H.; Leize-Wagner, E.; Van
Dorsselaer, A. Inorg. Chem. 2007, 46, 2854–2863. (b) Fang, Y. Q.; Taylor, N. J.;
Hanan, G. S.; Loiseau, F.; Passalacqua, R.; Campagna, S.; Nierengarten, H.; Van
Dorsselaer, A. J. Am. Chem. Soc. 2002, 124, 7912–7913.
(31) (a) Polson, M. I. J.; Loiseau, F.; Campagna, S.; Hanan, G. S. Chem.
Commun. 2006, 1301–1303. (b) Passalacqua, R.; Loiseau, F.; Campagna, S.;
Fang, Y. Q.; Hanan, G. S. Angew. Chem., Int. Ed. 2003, 42, 1608–1611.
(32) (a) Encinas, S.; Flamigni, L.; Barigelletti, F.; Constable, E. C.;
Housecroft, C. E.; Schofield, E. R.; Figgemeier, E.; Fenske, D.; Neuburger,
M.; Vos, J. G.; Zehnder, M. Chem.;Eur. J. 2002, 8, 137–150.
2004, 357, 699–706.
(18) (a) Saha, D.; Das, S.; Bhaumik, C.; Dutta, S.; Baitalik, S. Inorg.
Chem. 2010, 49, 2334–2348. (b) Das, S.; Saha, D.; Bhaumik, C.; Dutta, S.;
Baitalik, S. Dalton Trans. 2010, 39, 4162–4169.
(19) (a) Anzebacher, P.; Tyson, D. S.; Jurslkova, K.; Castellano, F. N.
J. Am. Chem. Soc. 2002, 124, 6232–6233. (b) Mizuno, T.; Wei, W.-H.; Eller,
L. R.; Sessler, J. L. J. Am. Chem. Soc. 2002, 124, 1134–1135.
ꢁ
(20) (a) Beer, P. D.; Szemes, F.; Balzani, V.; Sala, C. M.; Drew, M. G. B.;
Dent, S. W.; Maestri, M. J. Am. Chem. Soc. 1997, 119, 11864–11875. (b) Beer,
P. D.; Graydon, A. R.; Sutton, L. R. Polyhedron 1996, 15, 2457–2461. (c) Beer,
P. D.; Szemes, F. J. Chem. Soc., Chem. Commun. 1995, 2245–2247. (d) Beer,
P. D.; Dent, S. W.; Fletcher, N. C.; Wear, T. J. Polyhedron 1996, 15, 2983–2996.
(e) Beer, P. D.; Timoshenko, V.; Maestri, M.; Passaniti, P.; Balzani, V.
Chem. Commun. 1999, 1755–1756. (f) Szemes, F.; Hesek, D.; Chen, Z.; Dent,
S. W.; Drew, M. G. B.; Goulden, A. J.; Graydon, A. R.; Grieve, A.; Mortimer,
R. J.; Wear, T. J.; Weightman, J. S.; Beer, P. D. Inorg. Chem. 1996, 35, 5868–
5879.
(21) (a) Cui, Y.; Mo, H.-J.; Chen, J.-C.; Niu, Y.-L.; Zhong, Y.-R.; Zheng,
K.-C.; Ye, B.-H. Inorg. Chem. 2007, 46, 6427–6436. (b) Cui, Y.; Niu, Y.-L.;
Cao, M. L.; Wang, K.; Mo, H.-J.; Zhong, Y.-R.; Ye, B.-H. Inorg. Chem. 2008, 47,
5616–5624. (c) Lin, Z.-H.; Ou, S.-J.; Duan, C.-Y.; Zhang, B.-G.; Bai, Z.-P. Chem.
Commun. 2006, 624–626. (d) Lin, Z.-H.; Zhao, Y.-G.; Duan, C.-Y.; Zhang, B.-G.;
Bai, Z.-P. Dalton Trans. 2006, 3678–3684.
€
(b) Hammarstrom, L.; Barigelletti, F.; Flamigni, L.; Indelli, M. T.; Armaroli,
N.; Calogero, G.; Guardigli, M.; Sour, A.; Collin, J.-P.; Sauvage, J.-P. J. Phys.
Chem. A 1997, 101, 9061–9069.
(33) (a) Hissler, M.; El-ghayoury, A.; Harriman, A.; Ziessel, R. Angew.
Chem., Int. Ed. 1998, 37, 1717–1720. (b) Benniston, A. C.; Grosshenny, V.;
Harriman, A.; Ziessel, R. Angew. Chem., Int. Ed. 1994, 33, 1884–1885.
(c) Benniston, A. C.; Harriman, A.; Li, P.; Sams, C. A. J. Am. Chem. Soc.
2005, 127, 2553–2564. (d) Wang, X-y.; Del Guerzo, A.; Tunuguntla, H.; Schmehl,
R. H. Res. Chem. Intermed. 2007, 33, 63–77.
(34) (a) Duati, M.; Tasca, S.; Lynch, F. C.; Bohlen, H.; Vos, J. G.; Stagni,
S.; Ward, M. D. Inorg. Chem. 2003, 42, 8377–8384. (b) Duati, M.; Fanni, S.;
Vos, J. G. Inorg. Chem. Commun. 2000, 3, 68–70.
(22) (a) Ion, L.; Morales, D.; Perez, J.; Riera, L.; Riera, V.; Kowenicki,
R. A.; McPartlin, M. Chem. Commun. 2006, 91–93. (b) Zapata, F.; Caballero,
ꢀ
A.; Espinosa, A.; Tarraga, A.; Molina, P. J. Org. Chem. 2008, 73, 4034–4044.
(c) Derossi, S.; Adams, H.; Ward, M. D. Dalton Trans. 2007, 33–36.
(d) Lazarides, T.; Miller, T. A.; Jeffery, J. C.; Ronson, T. K.; Adams, H.; Ward,
M. D. Dalton Trans. 2005, 528–536. (e) Jose, D. A.; Kar, P.; Koley, D.; Ganguly,
B.; Thiel, W.; Ghosh, H. N.; Das, A. Inorg. Chem. 2007, 46, 5576–5584. (f) Rau,
S.; Buttner, T.; Temme, C.; Ruben, M.; Gorls, H.; Walther, D.; Duati, M.; Fanni,
S.; Vos, J. G. Inorg. Chem. 2000, 39, 1621–1624. (g) Fortin, S.; Beauchamp, A. L.
Inorg. Chem. 2001, 40, 105–112.
(35) (a) Indelli, M. T.; Bignozzi, C. A.; Scandola, F.; Collin, J.-P. Inorg.
Chem. 1998, 37, 6084–6089. (b) Constable, E. C.; Dunne, S. J.; Rees, D. G. F.;
Schmitt, C. X. Chem. Commun. 1996, 1169–1170.
(36) (a) Beley, M.; Collin, J.-P.; Louis, R.; Metz, B.; Sauvage, J.-P. J. Am.
Chem. Soc. 1991, 113, 8521–8522. (b) Beley, M.; Collin, J.-P.; Sauvage, J.-P.
Inorg. Chem. 1993, 32, 4539–4543. (c) Wilkinson, A. J.; Puschmann, H.;
Howard, J. A. K.; Foster, C. E.; Williams, J. A. G. Inorg. Chem. 2006, 45,
8685–8699. (d) Beley, M.; Chodorowski, S.; Collin, J.-P.; Sauvage, J.-P.;
Flamigni, L.; Barigelletti, F. Inorg. Chem. 1994, 33, 2543–2547. (e) Wadman,
S. H.; Lutz, M.; Tooke, D. M.; Spek, A. L.; Hartl, F.; Havenith, R.W. A.; van
Klink, G. P. M.; van Koten, G. Inorg. Chem. 2009, 48, 1887–1900.
(37) (a) Abrahamsson, M.; Lundqvist, M. J.; Wolpher, H.; Johansson, O.;
(23) (a) Watanabe, S.; Onogawa, O.; Komatsu, Y.; Yoshida, K. J. Am.
Chem. Soc. 1998, 120, 229–230. (b) Aoki, S.; Zulkefeli, M.; Shiro, M.; Kohsako,
M.; Takeda, K.; Kimura, E. J. Am. Chem. Soc. 2005, 127, 9129–9139. (c) Lin,
T.-P.; Chen, C.-Y.; Wen, Y.-S.; Sun, S.-S. Inorg. Chem. 2007, 46, 9201–9212.
(d) Wu, C.-Y.; Chen, M.-S.; Lin, C.-A.; Lin, S.-C.; Sun, S.-S. Chem.;Eur. J.
2006, 12, 2263–2269.
(24) Constable, E. C. Chem. Soc. Rev. 2004, 33, 246–253.
€
Eriksson, L.; Bergquist, J.; Rasmussen, T.; Becker, H.-C.; Hammarstrom,
(25) Hofmeier, H.; Schubert, U. S. Chem. Soc. Rev. 2004, 33, 373–399.
(26) (a) Medlycott, E. A.; Hanan, G. S. Coord. Chem. Rev. 2006, 250,
1763–1782. (b) Medlycott, E. A.; Hanan, G. S. Chem. Soc. Rev. 2005, 34,
133–142.
L.; Norrby, P.-O.; Akermark, B.; Persson, P. Inorg. Chem. 2008, 47, 3540–
€
€
3548. (b) Abrahamsson, M.; Jager, M.; Osterman, T.; Eriksson, L.; Persson, P.;
€
Becker, H. C.; Johansson, O.; Hammarstrom, L. J. Am. Chem. Soc. 2006, 128,
€
€
12616–12617. (c) Abrahamsson, M.; Jager, M.; Kumar, R. J.; Osterman, T.;
(27) (a) Wang, X.-Y.; Del Guerzo, A.; Schmehl, R. H. J. Photochem.
Photobiol. C 2004, 5, 55–77. (b) Baba, A. I.; Shaw, J. R.; Simon, J. A.; Thummel,
R. P.; Schmehl, R. H. Coord. Chem. Rev. 1998, 171, 43–59.
€
Persson, P.; Becker, H. C.; Johansson, O.; Hammarstrom, L. J. Am. Chem. Soc.
2008, 130, 15533–15542.