Organic Process Research & Development 2010, 14, 666–667
A Practical Preparation of Ethyl N-Acyl-2-(dimethoxyphosphoryl)glycinate
Feng Xu* and Paul Devine
Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065, U.S.A.
Scheme 1. Two-step preparation of 1
Abstract:
A practical, cost-effective preparation of ethyl N-acyl-2-(dimethox-
yphosphoryl)glycinate has been developed. The two-step process
achieved an 80% overall isolated yield.
Introduced by Ratcliffe and Christensen in 1973,1 ethyl
N-acyl-2-(dimethoxyphosphoryl)glycinate (1) as well as its
derivatives are useful synthetic building blocks with wide
applications in organic synthesis. For example, R,ꢀ-unsaturated
R-amino acid derivatives, which are also common moieties of
natural dehydropeptides, can be prepared easily via a Horner-
Wadsworth-Emmons reaction by coupling 1 with an aldehyde
or ketone.2 Furthermore, subsequent asymmetric hydrogenation
of R,ꢀ-unsaturated R-amine acid derivatives provides one of
the most desirable ways to access natural and unnatural amino
acids.2,3 In addition, 1 and its derivatives have also been applied
to prepare various important ꢀ-lactam antibiotics.1,4
prepare 1 as well as its derivatives in the past decades.1,6
Most of the reported methods either offered poor to
moderate yield or were not atom-economically efficient.
However, the approach7 to install a phosphoryl group by
applying a Michaelis-Arbuzov reaction on R-halo glycine
esters is scientifically sound and attractive. After further
study/modification of this strategy, we herein report a
practical two-step process, which is suitable for large-
scale preparation, to afford 1 in 80% overall isolated yield
(Scheme 1).
Readily available ethyl glyoxalate (2) became our inexpen-
sive starting material of choice.8 Efficient condensation of the
derivative of 2, hemiacetal MeOCH(OH)CO2Me, with aceta-
mide has been reported.9 However, attempts to follow the
similar procedure to condense 2 with acetamide in refluxing
toluene did not give satisfactory conversion and yield.10 After
several experiments, we found that introducing HOAc to the
reaction solution improved the reaction rate as well as the
conversion significantly. The HOAc charge could be varied
from 0.05 to 2 equiv with 0.4-0.6 equiv being optimal (Table
1). In order to directly isolate the product 3 from the reaction
mixture, a combination of i-PrOAc and heptane became solvents
of choice. In practice, after aging the mixture of 2 (1.05 equiv,
50 wt % solution in toluene) and acetamide in the presence of
40 mol % of HOAc at 55-60 °C for about 1 h (∼30%
conversion), the reaction solution was then seeded to relieve
Although analogues of 1 are commercially available,
the use of these reagents in large-scale synthesis is limited
due to cost.5 Various methods have been developed to
* Author to whom correspondence may be sent. E-mail: feng_xu@merck.com.
(1) (a) Ratcliffe, R. W.; Christensen, B. G. Tetrahedron Lett. 1973, 4645.
(b) Ratcliffe, R. W.; Christensen, B. G. Tetrahedron Lett. 1973, 4649.
(2) For recent examples, see: (a) Okuma, K.; Ono, A. M.; Tsuchiya, S.;
Oba, M.; Nishiyama, K.; Kainosho, M.; Terauchi, T. Tetrahedron Lett.
2009, 50, 1482. (b) Elaridi, J.; Patel, J.; Jackson, W. R.; Robinson,
A. J. J. Org. Chem. 2006, 71, 7538. (c) Liu, Y.; Ding, K. J. Am. Chem.
Soc. 2005, 127, 10488. (d) Aguado, G. P.; Moglioni, A. G.; Garcia-
Exposito, E.; Branchadell, V.; Ortuno, R. M. J. Org. Chem. 2004, 69,
7971. (e) Aguado, G. P.; Moglioni, A. G.; Ortun˜o, R. M. Tetrahedron:
Asymmetry 2003, 14, 217. (f) van den Berg, M.; Minnaard, A. J.;
Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.;
Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539. (g) Burk, M. J.;
Gross, M. F.; Martinez, J. P. J. Am. Chem. Soc. 1995, 117, 9375. (h)
Lorenz, J. C.; Busacca, C. A.; Feng, X.; Ginberg, N.; Haddad, N.;
Johnson, J.; Kapadia, S.; Lee, H.; Saha, A.; Sarvestani, M.; Spinelli,
E. M.; Varsolona, R.; Wei, X.; Zeng, X.; Senanayake, C. H. J. Org.
Chem. 2010, 75, 1155.
(3) For recent reviews, see: (a) Minnaard, A. J.; Feringa, B. L.; Lefort,
L.; de Vries, J. G. Acc. Chem. Res. 2007, 40, 1267. (b) Ma, J.-A.
Angew. Chem., Int. Ed. 2003, 42, 4290. (c) Cativiela, C.; D´ıaz-de-
Villegas, M. D. Tetrahedron: Asymmetry 2000, 11, 645. (d) Brown,
J. M. ComprehensiVe Asymmetric Catalysis; Springer: Berlin, 1999;
Vol I, p 121.
(6) For lead references, see: (a) Mazurkiewicz, R.; Kuznik, A. Tetrahedron
Lett. 2006, 47, 3439. (b) Mauldin, S. C.; Hornback, W. J.; Munroe,
J. E. J. Chem. Soc., Perkin Trans. I 2001, 1554. (c) Ferries, L.; Haigh,
D.; Moody, C. J. J. Chem. Soc., Perkin Trans. I 1996, 2885. (d)
Shankar, R.; Scott, A. I. Tetrahedron Lett. 1993, 34, 231. (e)
Narukawa, Y.; Juneau, K. N.; Snustad, D.; Miller, D. B.; Hegedus,
L. S. J. Org. Chem. 1992, 57, 5453. (f) Daumas, M.; Vo-Quang, L.;
Goffic, F. L. Synth. Commun. 1990, 22, 3395. (g) Shiraki, C.; Saito,
H.; Takahashi, K.; Urakawa, C.; Hirata, T. Synthesis 1988, 399. (h)
Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1984, 53, and
references cited therein.
(4) For recent examples, see: (a) Norris, T.; Nagakura, I.; Morita, H.;
McLachlan, G.; Desneves, J. Org. Process Res. DeV. 2007, 11, 742.
(b) Hakimelahi, G. H.; Moosavi-Movahedi, A. A.; Saboury, A. A.;
Osetrov, V.; Khodarahmi, G. A.; Shia, K.-S. Int. J. Sci. Res. 2005,
14, 59. (c) Seki, M.; Kondo, K.; Iwasaki, T. J. Chem. Soc., Perkin
Trans. I 1996, 1, 3. (d) Narukawa, Y.; Juneau, K. N.; Snustad, D.;
Miller, D. B.; Hegedus, L. S. J. Org. Chem. 1992, 57, 5453, and
references cited therein.
(7) For lead references and examples, see: refs 6d,e,g,h.
(8) Ethyl glyoxalate (∼50% in toluene): ∼$34/kg at 1000 kg scale from
Clariant (France).
(9) Alks, V.; Sufrin, J. R. Synth. Commun. 1989, 19, 1479.
(10) Condensation of 2 with acetamide in acetone gave moderate
yield. Schmitt, M.; Bourguignon, J.-J.; Barlin, G. B.; Davies, L. P.
Aust. J. Chem. 1997, 50, 719.
(5) For example, methyl 2-acetamido-2-(dimethoxyphosphoryl)acetate:
∼$3780/kg at 100 kg scale Digital Specialty Chemicals Ltd. (Canada);
methyl tert-butoxycarbonylamino(dimethoxyphosphoryl)acetate: ∼$2370/
kg at 500 kg scale from Sigma-Aldrich (USA).
666
•
Vol. 14, No. 3, 2010 / Organic Process Research & Development
10.1021/op1000594 2010 American Chemical Society
Published on Web 04/29/2010