for their synthesis is based on the diastereoselective reduction
of an enantiomerically pure substrate, whereby the chirality
of the substrate controls the formation of the new stereogenic
center.9a-d Recently there has been a report of a reagent-
controlled synthesis of anti-1,3-amino alcohol using rhodium
as a catalyst.9e However, all these reports suffer from one
or more disadvantages such as they (a) give predominantly
one of the two isomers syn or anti, (b) require specially
modified starting materials (ꢀ-keto alcohols, ꢀ-amino ke-
tones), and (c) use toxic metal catalysts like Rh((COD)dun-
phos)BF4, SmI2, Ti(iOPr)4, and Pd(OAc)2, etc.
trapped in situ by various methods to furnish 1,2-amino
alcohol, γ-amino-R,ꢀ-unsaturated ester, ꢀ-amino alcohol
etc.13c,14 We chose to trap them by HWE olefination to
furnish γ-amino-R,ꢀ-unsaturated ester using a mild procedure
developed by Sudalai et al.14a It is noteworthy that γ-amino-
R,ꢀ-unsaturated ester, an allylic amine, can serve as a useful
building block and can further be elaborated to the synthesis
of a variety of compounds of biological importance.
Our strategy for the synthesis of 1,3-amino alcohol is
outlined in Figure 1.
Proline in the recent past has been defined as a “universal
catalyst” because of its utility in different reactions providing
rapid, catalytic, atom-economical access to enantiomerically
pure products.10 Similarly, organocatalytic tandem reactions are
characterized by high efficiencies. They often proceed with
excellent stereocontrol and are environmentally friendly.11
Recently, we developed an iterative approach to enan-
tiopure synthesis of syn/anti-1,3-polyols12a which is based
on proline-catalyzed sequential R-aminoxylation and
Horner-Wadsworth-Emmons (HWE) olefination of alde-
hydes reported by Zhong et al.12b As a part of our research
interest on developing new methodologies and their subse-
quent application to bioactive compounds,12c,d we envis-
ioned that the proline-catalyzed R-aminoxylation13a,b and
R-amination13c could easily give us stereocontrolled synthetic
access to 1,3-amino alcohols. Since the R-amino aldehydes
are prone to racemization, they have been sucessesfully
Figure 1. General strategy for the synthesis of 1,3-amino alcohol.
Toward the synthesis of 1,3-amino alcohols, our first goal
was to synthesize various protected γ-hydroxy esters by the
protocol developed recently by us.12a Thus, commercially
available aldehydes 1a-e on sequential R-aminoxylation
using nitroso benzene as the oxygen source and L-proline as
catalyst and subsequent HWE olefination using triethyl
phosphonoacetate, followed by hydrogenation using a cata-
lytic amount of Pd/C, furnished the γ-hydroxy esters 2a-e
in good yields (65-73%) and excellent enantioselectivities
(94 to >99%) (Scheme 1, Table 1).
(7) For excellent reviews on the use of chiral 1,3-amino alcohol in
asymmetric organic synthesis see: Lait, S. M.; Rankic, D. A.; Keay, B. A.
Chem. ReV. 2007, 107, 767.
(8) Asymmetric synthesis of 1,3-amino alcohols: (a) Yamamoto, Y.;
Komatsu, T.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1985, 814.
(b) Barluenga, J.; Ferna´ndez-Mari, F.; Viado, A. L.; Aguilar, E.; Olano, B.
J. Org. Chem. 1996, 61, 5659. (c) Toujas, J.-L.; Toupet, L.; Vaultier, M.
Tetrahedron 2000, 56, 2665. See also refs 1 and 2. (d) For a review see:
Tramontini, M. Synthesis 1982, 605. (e) For reduction of enantiopure
ꢀ-amino ketones see: Davis, F. A.; Prasad, K. R.; Nolt, B. M.; Wu, Y.
Org. Lett. 2003, 5, 923. (f) Davis, F. A.; Rao, A.; Carroll, P. J. Org. Lett.
2003, 5, 3855. (g) Kennedy, A.; Nelson, A.; Perry, A. Synlett 2004, 967.
(h) Huguenot, F.; Brigaud, T. J. Org. Chem. 2006, 71, 2159.
(9) (a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002,
124, 6518. (b) Keck, G. E.; Truong, A. P. Org. Lett. 2002, 4, 3131. (c)
Davis, F. A.; Gaspari, P. M.; Nolt, B. M.; Xu, P. J. Org. Chem. 2008, 73,
9619. (d) Menche, D.; Arikan, F.; Li, J.; Rudolph, S. Org. Lett. 2007, 9,
267. (e) Geng, H.; Zhang, W.; Chen, J.; Hou, G.; Zhou, L.; Zou, Y.; Wu,
W.; Zhang, X. Angew. Chem., Int. Ed. 2009, 48, 6052.
Scheme 1. Synthesis of γ-Hydroxy Esters
(10) (a) List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc.
2000, 122, 2395. (b) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III.
J. Am. Chem. Soc. 2001, 123, 5260. (c) For a review of proline-catalyzed
asymmetric reactions, see: List, B. Tetrahedron 2002, 58, 5573. (d) Dalko,
P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (e) List, B. Chem.
Commun. 2006, 819. (f) For R-functionalization reviews, see: Franzen, J.;
Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen,
K. A. J. Am. Chem. Soc. 2005, 127, 18296. (g) Guillena, G.; Ramon, D. J.
Tetrahedron:Asymmetry 2006, 17, 1465. (h) For a comprehensive review
on R-aminoxylation, see: Merino, P.; Tejero, T. Angew. Chem., Int. Ed.
2004, 43, 2995, and references cited therein.
The free hydroxy group of γ-hydroxy esters 2a-e was
protected as TBS ether using TBSCl to furnish compounds
3a-e in excellent yields (Table 1). With TBS-protected
γ-hydroxy esters 3a-e in hand, the stage was set for the
introduction of amine functionality at the 3-position with respect
to the hydroxy group. As illustrated in Scheme 2, the DIBAL-H
reduction of ester 3a furnished the corresponding aldehyde
(11) (a) Bui, T.; Barbas, C. F., III. Tetrahedron Lett. 2000, 41, 6951.
For reviews on organocatalytic tandem reactions, see: (b) Notz, W.; Tanaka,
F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580. (c) Enders, D.; Grondal,
¨
C.; Huttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (d) Yu, X.;
Wang, W. Org. Biomol. Chem. 2008, 6, 2037. (e) Walji, A. M.; MacMillan,
D. W. C. Synlett 2007, 1477. (f) Lu, M.; Zhu, D.; Lu, Y.; Hou, Y.; Tan,
B.; Zhong, G. Angew. Chem., Int. Ed. 2008, 47, 10187.
(13) (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247. (b) Chua,
P. J.; Tan, B.; Zhong, G. Green Chem. 2009, 11, 543. (c) List, B. J. Am.
(12) (a) Kondekar, N. B.; Kumar, P. Org. Lett. 2009, 11, 2611. (b)
Zhong, G.; Yu, Y. Org. Lett. 2004, 6, 1637. (c) Kumar, P.; Gupta, P.; Naidu,
S. V. Chem.sEur. J. 2006, 12, 1397. (d) Chowdhury, P. S.; Gupta, P.;
Kumar, P. Tetrahedron Lett. 2009, 50, 7018, and references cited therein.
Chem. Soc. 2002, 124, 5656.
(14) (a) Kotkar, S. P.; Chavan, V. B.; Sudalai, A. Org. Lett. 2007, 9,
1001. (b) Naidu, S. C.; Ramachary, D. B.; Barbas, III, C. F. Org. Lett. 2003,
5, 1685. (c) Lim, A.; Choi, H. J.; Tae, J. Tetrahedron Lett. 2008, 49, 4882
.
Org. Lett., Vol. 12, No. 12, 2010
2763