S. T. Staben et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6048–6051
6051
Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell,
S. M.; Riggins, G. J.; Willson, J. K.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.;
Velculescu, V. E. Science 2004, 30, 554; (c) Parsons, D. W.; Wang, T. L.; Samuels,
Y.; Bardelli, A.; Cummins, J. M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.;
Willson, J. K.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Lengauer, C.;
Velculescu, V. E. Nature 2005, 436, 792.
Me
Me
Me
H2N
R
Cl
N
Cl
N
N
N
N
e-g
a,b
N
N
N
N
R = NH2
R = OEt
Cl
14
O
Cl
15
13a R = NH2
2. (a) Hennessy, B. T.; Smith, D. L.; Ram, P. T.; Lu, Y.; Mills, G. B. Nat. Rev. Drug Disc.
2005, 4, 98; (b) Wee, S.; Lengauer, C.; Wiederschain, D. Curr. Opin. Oncol. 2008,
20, 77; (c) Chalhoub, N.; Baker, S. J. Annu. Rev. Pathol. Mech. Dis. 2009, 4, 127; (d)
Marone, R.; Cmiljanovic, V.; Giese, B.; Wymann, M. P. Biochim. Biophys. Acta
2008, 159; (e) Yap, T. A.; Garrett, M. D.; Walton, M. I.; Raynaud, F.; de Bono, J. S.;
Workman, P. Curr. Opin. Pharmacol. 2008, 8, 393; (f) Crabbe, T.; Welham, M. J.;
Ward, S. G. Trends Biochem. Sci. 2007, 32, 460.
13b
R = OEt
Me
c,d
N
h,i
N
HN
N
N
X
3. For select examples see: (a) Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Aliz, S.;
Baker, S. J.; Box, G.; Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles, S. A.;
Friedman, L. S.; Hayes, A.; Hancox, T. C.; Kugendradas, A.; Lensun, L.; Moore, P.;
Olivero, A. G.; Pang, J.; Patel, S.; Pergl-Wilson, G.; Raynaud, F. I.; Robson, A.;
Saghir, N.; Salphati, L.; Sohal, S.; Ultsch, M. H.; Valenti, M.; Wallweber, H. J. A.;
Wan, N. C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.; Zvelebil, M. J.;
Shuttleworth, S. J. J. Med. Chem. 2008, 51, 5522; (b) Vlahos, C. J.; Matter, W. F.;
Hui, K. Y.; Brown, R. F. J. Biol. Chem. 1994, 269, 5241; (c) Hayakawa, M.;
Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.;
Ohta, M.; Tsukamoto, S.-I.; Raynaud, F. I.; Workman, P.; Waterfield, M. D.;
Parker, P. Bioorg. Med. Chem. Lett. 2007, 17, 2438; (d) Hayakawa, M.; Kaizawa,
H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.-I.;
Parker, P.; Workman, P.; Waterfield, M. Bioorg. Med. Chem. 2006, 14, 6847; (e)
Rikki, A.; Ahrani, B.; Batchelor, M.; Brookings, D.; Crepy, K.; Crabbe, T.; Deltent,
M.-F.; Driessens, F.; Gill, A.; Harris, S.; Hutchinson, G.; Kulisa, C.; Merriman, M.;
Mistry, P.; Parton, T.; Turner, J.; Whitcombe, I.; Wright, S. Bioorg. Med. Chem.
Lett. 2008, 18, 4316; (f) Dehnhardt, C. M.; Venkatesan, A. M.; Delos Santos, E.;
Chen, Z.; Santos, O.; Ayral-Kaloustian, S.; Brooijmns, N.; Mallon, R.; Hollander,
I.; Feldberg, L.; Lucas, J.; Chudhary, I.; Yu, K.; Gibbons, J.; Abraham, R.; Mansour,
T. S. J. Med. Chem. 2010, 53, 798; (g) Zask, A.; Kaplan, J.; Verheijen, J. C.; Richard,
D. J.; Curran, K.; Brooijmans, N.; Bennett, E. M.; Toral-Barza, L.; Hollander, I.;
Ayral-Kaloustian, S.; Yu, K. J. Med. Chem. 2009, 52, 7942; (h) Perry, B.;
Alexander, R.; Bennett, G.; Buckley, G.; Ceska, T.; Crabbe, T.; Dale, V.; Gowers,
L.; Horsley, H.; James, L.; Jenkins, K.; Crepy, K.; Kulisa, C.; Lightfoot, H.; Lock, C.;
Mack, S.; Morgan, T.; Nicolas, A.-L.; Pitt, W.; Sabin, V.; Wright, S. Bioorg. Med.
Chem. Lett. 2008, 18, 4700; (i) Sutherlin, D. P.; Sampath, D.; Berry, M.;
Castanedo, G.; Chang, Z.; Chuckowree, I.; Dotson, J.; Folkes, A.; Friedman, L.;
Goldsmith, R.; Heffron, T.; Lee, L.; Lesnick, J.; Lewis, C.; Mathieu, S.; Nonomiya,
J.; Olivero, A.; Pang, J.; Prior, W. W.; Salphati, L.; Sideris, S.; Tian, Q.; Tsui, V.;
Wan, N. C.; Wang, S.; Wiesmann, C.; Wong, S.; Zhu, B.-Y. J. Med. Chem. 2010, 53,
1086; (j) Heffron, T. P.; Berry, M.; Castanedo, G.; Chang, C.; Chuckowree, I.;
Dotson, J.; Folkes, A.; Gunzner, J.; Lesnick, J. D.; Lewis, C.; Mathieu, S.;
Nonomiya, J.; Olivero, A.; Pang, J.; Peterson, D.; Salphati, L.; Sampath, D.;
Sideris, S.; Sutherlin, D. P.; Tsui, V.; Wan, N. C.; Wang, S. M.; Wong, S.; Zhu, B. Y.
Bioorg. Med. Chem. Lett. 2010, 20, 2408.
O
X = N, 10
12
X = CH,
SO2Me
Scheme 1. Synthesis of 10 and 12. Reagent and conditions: (a) urea, 180 °C, 84%;
(b) PCl5, POCl3, 150 °C, 64%; (c) 4-(methylsulfonyl)phenol, NaH, THF; (d) 5 mol %
(PPh3)2PdCl2, Na2CO3 (3 equiv), MeCN/H2O, 80 °C microwave; (e) dimethylmalo-
nate, NaOEt, EtOH, 100 °C; then (f) 15% NaOH, 100 °C, 60% over (e and f); (g)
PhP(O)Cl2, 170 °C, 75%; (h) 5 mol % (PPh3)2PdCl2, NaHCO3 (3 equiv), MeCN/H2O,
150 °C microwave, 66%; (i) 4-(methylsulfonyl)phenol, K2CO3, DMF, 155 °C micro-
wave, 40%.
removal of a core-nitrogen atom. Through this modification, we
anticipated an increase in passive permeability and solubility
(esp. at low pH from increased pKa of core nitrogen). Pyrazolopyr-
idine 12 has a substantially higher apparent permeability, without
reduction in solubility, and thus is >100% bioavailable at a 5 mg/kg
solution dose.
Importantly, 12 displayed no significant inhibition in a 59-
member kinase panel at 1
PI3-kinases over other PIKK family members (i.e., DNA-PK
IC50 = 1.02 M, mTOR Ki,app >10 M). In addition, 12 was not a po-
tent inhibitor of human CYP isozymes (IC50 >20 M) and was very
l
M12 and also was selective for class I
l
l
l
stable in hepatocyte incubations (human 94% remaining,
mouse ꢀ100% remaining, 3 h).
Compound 12 was dosed at 50 mg/kg po in athymic nude mice
implanted with PC3-cell xenografts to evaluate its effect on down-
stream markers of PI3K. Suppression of pAkt, pPRAS40, and pS6RP
was observed through the 6 h post dose time period when plasma
drug levels remain elevated (Fig. 3).13
4. X-ray structures of 6 and 1d have been deposited in the PDB (id: 3NZS and
3NZU).
5. Lys833 is not well defined in the crystal structure density. This interaction
could be more important in PI3Ka.
6. No detectable concentration after oral dosing at 5 mg/kg in 80% PEG/EtOH
vehicle.
Synthesis of 10 and 12 is shown in Scheme 1.14 By slight mod-
ification of a literature procedure,15 heating 13a in molten urea,
followed by POCl3-mediated chlorination provided dichloropyraz-
olopyrimidine 14. A two-pot procedure was developed for the syn-
thesis of dichloropyrazolopyridine 15. Both 14 and 15 were
converted to the titled compounds by standard SNAr and Suzuki
coupling procedures.
7. TPSA (topological polar surface area) calculation similar to that as described in:
Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.
8. (a) Kwon, H.; Lionberger, R. A.; Yu, L. X. Mol. Pharm. 2004, 1, 455; (b) Lin, J.;
Chiba, M.; Baillie, T. Pharmacol. Rev. 1999, 1, 135; (c) Collett, A.; Tanianis-
Hughes, J.; Hallifax, D.; Warhurst, G. Pharm. Res. 2004, 21, 819.
9. Consistent with this statement, co-administration of Gefitinib (a known PgP
and BCRP inhibitor) with compound 9 did result in improved bioavailablity of
9.
10. This ratio was decreased when co-administered with known inhibitors of PgP
(GF120918, Elacridar) and BCRP (Fumitremorgin C). For example: Papp
A–B = 0.63 Â 10À6 cm/s, B–A/A–B = 17.60 for 9 in cell line C (Bcrp1-MDCKII) in
the presence of Fumitremorgin C.
11. For examples, see (a) Roberts, L. R.; Bryans, J.; Conlon, K.; McMurray, G.; Stobie,
A.; Whitlock, G. A. Bioorg. Med. Chem. Lett. 2008, 18, 6437; (b) Raub, T. J. Mol.
Pharm. 2005, 3, 3.
12. Study performed at Invitrogen; most significant was 27% inhibition of FLT 3.
13. The attenuated pathway knockdown for 12 can be attributed to its modest
cellular pAKT activity as well as low exposure of free drug in this experiment
(mouse plasma protein binding = 98.8%). Compound 12 was not tested in a
mouse xenograft model for tumor growth inhibition. Determination of a MTD
was not attempted.
In conclusion, co-crystallization and molecular modeling were
used to design analogs of HTS hit 1a with improved potency. Care-
ful analysis of physicochemical properties led to the identification
of specific linker and core modifications that improved passive per-
meability and minimized efflux leading to dramatically improved
bioavailability. Compound 12 displayed a pronounced pharmaco-
dynamic effect on PI3K markers in an in vivo human prostate can-
cer xenograft model.
Acknowledgments
14. (a) For experimental data and characterization see: Dotson, J.; Heffron, T.;
Olivero, A. O.; Sutherlin, D. P.; Staben, S. T.; Wang, S.; Zhu, B-Y.; Chuckowree, I.
S.; Folkes, A. J.; Wan, N. C. WO/2010/059788; PCT/US2009/065085.; (b) Dotson,
J.; Heffron, T.; Olivero, A. O.; Sutherlin, D. P.; Wang, S.; Zhu, B-Y.; Chuckowree, I.
S. Folkes, A. J.; Wan, N. C. WO/2009/097446; PCT/US2009/032459.
15. Ferroni, R.; Simoni, D.; Orlandini, P.; Bardi, A.; Franze, G. P.; Guarneri, M.
Arzneimittelforschung 1990, 40, 1328.
The authors thank Mengling Wong, Chris Hamman, Mike Hayes,
and Baiwei Lin for analytical/purification support.
References and notes
1. (a) Shayesteh, L.; Kuo, W. L.; Baldocchi, R.; Godfrey, T.; Collins, C.; Pinkel, D.;
Powell, B.; Mills, G. B.; Gray, J. W. Nat. Genet. 1999, 21, 99; (b) Samuels, Y.;