Page 11 of 12
Journal of the American Chemical Society
Oxo, Nitrido, Imido, or Alkylidyne Ligands. Wiley-Interscience:
Georgetown, 1988.
11. Saouma, C. T.; Peters, J. C., M≡E and M=E complexes of
iron and cobalt that emphasize three-fold symmetry (E = O, N,
NR). Coord. Chem. Rev. 2011, 255, 920-937.
into the Cobalt−Carbene Bond. J. Am. Chem. So. 2004, 126 (50),
16322-16323.
1
2
3
4
5
6
7
8
30.
Dai, X.; Kapoor, P.; Warren, T. H., [Me2NN]Co(η6-
toluene):ꢀ OO, NN, and ON Bond Cleavage Provides β-
Diketiminato Cobalt μ-Oxo and Imido Complexes. J. Am. Chem.
Soc. 2004, 126 (15), 4798-4799.
12.
nitrido complexes of iron. J. Inorg. Biochem. 2006, 100, 634-643.
13. Iovan, D. A.; Betley, T. A., Characterization of iron–
Mehn, M. P.; Peters, J. C., Mid-to-high-valent imido and
31.
Cowley, R. E.; Bontchev, R. P.; Sorrell, J.; Sarracino, O.;
Feng, Y.; Wang, H.; Smith, J. M., Formation of a Cobalt(III) Imido
from a Cobalt(II) Amido Complex. Evidence for Proton-Coupled
Electron Transfer. J. Am. Chem. Soc. 2007, 129 (9), 2424-2425.
imido species relevant for N–group transfer chemistry. J. Am.
Chem. Soc. 2016, 138, 1983-1993.
14.
Hennessy, E. T.; Betley, T. A., Complex N-Heterocycle
32.
Jones, C.; Schulten, C.; Rose, R. P.; Stasch, A.; Aldridge,
9
Synthesis via Iron-Catalyzed, Direct C–H Bond Amination.
Science 2013, 340 (6132), 591-595.
S.; Woodul, W. D.; Murray, K. S.; Moubaraki, B.; Brynda, M.; Laꢁ
Macchia, G.; Gagliardi, L., Amidinato– and Guanidinato–Cobalt(I)
Complexes: Characterization of Exceptionally Short Co–Co
Interactions. Angew. Chem. Int. Ed. 2009, 48 (40), 7406-7410.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
15.
King, E. R.; Hennessy, E. T.; Betley, T. A., Catalytic C-H
bond amination from high-spin iron imide complexes. J. Am.
Chem. Soc. 2011, 133, 4917-4923.
33.
Liu, Y.; Du, J.; Deng, L., Synthesis, Structure, and
16.
Kuijpers, P. F.; vanꢁderꢁVlugt, J. I.; Schneider, S.; deꢁ
Reactivity of Low-Spin Cobalt(II) Imido Complexes
[(Me3P)3Co(NAr)]. Inorg. Chem. 2017, 56 (14), 8278-8286.
Bruin, B., Nitrene Radical Intermediates in Catalytic Synthesis.
Chem. Eur. J. 2017, 23 (56), 13819-13829.
34.
Du, J.; Wang, L.; Xie, M.; Deng, L., A Two-Coordinate
17.
Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.;
Cobalt(II) Imido Complex with NHC Ligation: Synthesis,
Structure, and Reactivity. Angew. Chem. Int. Ed. 2015, 54 (43),
12640-12644.
Zhang, X. P.; de Bruin, B., Mechanism of Cobalt(II) Porphyrin-
Catalyzed C–H Amination with Organic Azides: Radical Nature
and H-Atom Abstraction Ability of the Key Cobalt(III)–Nitrene
Intermediates. J. Am. Chem. Soc. 2011, 133 (31), 12264-12273.
35.
Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A.
L.; Theopold, K. H., Intramolecular C–H Activation by an Open-
Shell Cobalt(III) Imido Complex. Angew. Chem. Int. Ed. 2005, 44
(10), 1508-1510.
18.
Suarez, A. I. O.; Lyaskovskyy, V.; Reek, J. N. H.; vanꢁderꢁ
Vlugt, J. I.; deꢁBruin, B., Complexes with Nitrogen-Centered
Radical Ligands: Classification, Spectroscopic Features,
Reactivity, and Catalytic Applications. Angew. Chem. Int. Ed. 2013,
52 (48), 12510-12529.
36.
Zhang, L.; Liu, Y.; Deng, L., Three-Coordinate
Cobalt(IV) and Cobalt(V) Imido Complexes with N-Heterocyclic
Carbene Ligation: Synthesis, Structure, and Their Distinct
Reactivity in C–H Bond Amination. J. Am. Chem. Soc. 2014, 136
(44), 15525-15528.
19.
Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma,
W. J.; Woutersen, S.; Troeppner, O.; Ivanović-Burmazović, I.; Lu,
H.; Cui, X.; Zhang, X. P.; Reijerse, E. J.; DeBeer, S.; van
Schooneveld, M. M.; Pfaff, F. F.; Ray, K.; de Bruin, B.,
Characterization of Porphyrin-Co(III)-‘Nitrene Radical’ Species
Relevant in Catalytic Nitrene Transfer Reactions. J. Am. Chem. So.
2015, 137 (16), 5468-5479.
37.
King, E. R.; Sazama, G. T.; Betley, T. A., Co(III) Imidos
Exhibiting Spin Crossover and C–H Bond Activation. J. Am. Chem.
Soc. 2012, 134 (43), 17858-17861.
38.
Iovan, D. A.; Wilding, M. J. T.; Baek, Y.; Hennessy, E. T.;
Betley, T. A., Diastereoselective C−H Bond Amination for
Disubstituted Pyrrolidines. Angew. Chem. Int. Ed. 2017, 56 (49),
15599-15602.
20.
Lu, H.; Li, C.; Jiang, H.; Lizardi, C. L.; Zhang, X. P.,
Chemoselective Amination of Propargylic C(sp3)–H Bonds by
Cobalt(II)-Based Metalloradical Catalysis. Angew. Chem. Int. Ed.
2014, 53 (27), 7028-7032.
39.
Hennessy, E. T.; Liu, R. Y.; Iovan, D. A.; Duncan, R. A.;
Betley, T. A., Iron-mediated intermolecular N-group transfer
chemistry with olefinic substrates. Chem. Sci. 2014, 5 (4), 1526-
1532.
21.
Lu, H.; Hu, Y.; Jiang, H.; Wojtas, L.; Zhang, X. P.,
Stereoselective Radical Amination of Electron-Deficient C(sp3)–H
Bonds by Co(II)-Based Metalloradical Catalysis: Direct Synthesis
of α-Amino Acid Derivatives via α-C–H Amination. Org. Lett.
2012, 14 (19), 5158-5161.
40.
Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi,
S.; Piangiolino, C., Coordination chemistry of organic azides and
amination reactions catalyzed by transition metal complexes.
Coord. Chem. Rev. 2006, 250 (11), 1234-1253.
22.
Lu, H.; Jiang, H.; Hu, Y.; Wojtas, L.; Zhang, X. P.,
Chemoselective intramolecular allylic C–H amination versus C–C
aziridination through Co(II)-based metalloradical catalysis.
Chem. Sci. 2011, 2 (12), 2361-2366.
41.
Meyer, K. E.; Walsh, P. J.; Bergman, R. G., A Mechanistic
Study of the Cycloaddition-Cycloreversion Reactions of
Zirconium-Imido Complex Cp2Zr(N-t-Bu)(THF) with Organic
Imines and Organic Azides. J. Am. Chem. Soc.1995, 117 (3), 974-
985.
23.
porphyrin-nitrene complex. Inorg. Chem. 2010, 49, 243-248.
24. Corona, T.; Ribas, L.; Rovira, M.; Farquhar, E. R.; Ribas,
Conradie, J.; Ghosh, A., Electronic structure of an iron-
42.
Michelman, R. I.; Bergman, R. G.; Andersen, R. A.,
X.; Ray, K.; Company, A., Characterization and reactivity studies
of a terminal copper–nitrene species. Angew. Chem. Int. Ed. 2016,
55, 14005-14008.
Synthesis, exchange reactions, and metallacycle formation in
osmium(II) imido systems: formation and cleavage of osmium-
nitrogen bonds. Organometallics 1993, 12 (7), 2741-2751.
25.
late transition metals. Comments on Inorg. Chem. 2009, 30, 28-66.
26. Wilding, M. J. T.; Iovan, D. A.; Betley, T. A., High-Spin
Berry, J. F., Terminal nitrido and imido complexes of the
43. Simmons, E. M.; Hartwig, J. F., On the Interpretation of
Deuterium Kinetic Isotope Effects in C–H Bond
Functionalizations by Transition-Metal Complexes. Angew.
Chem. In. Ed. 2012, 51 (13), 3066-3072.
Iron Imido Complexes Competent for C–H Bond Amination. J.e
Am. Chem. Soc. 2017, 139 (34), 12043-12049.
44.
Kuijpers, P. F.; Tiekink, M. J.; Breukelaar, W. B.; Broere,
27.
Jenkins, D. M.; Betley, T. A.; Peters, J. C., Oxidative
D. L. J.; vanꢁLeest, N. P.; vanꢁderꢁVlugt, J. I.; Reek, J. N. H.; deꢁ
Bruin, B., Cobalt-Porphyrin-Catalysed Intramolecular Ring-
Closing C−H Amination of Aliphatic Azides: A Nitrene-Radical
Approach to Saturated Heterocycles. Chem. Eur. J. 2017, 23 (33),
7945-7952.
Group Transfer to Co(I) Affords a Terminal Co(III) Imido
Complex. J. Am. Chem. Soc. 2002, 124 (38), 11238-11239.
28.
Betley, T. A.; Peters, J. C., Dinitrogen Chemistry from
Trigonally Coordinated Iron and Cobalt Platforms. J. Am. Chem.
Soc. 2003, 125 (36), 10782-10783.
29. Hu, X.; Meyer, K., Terminal Cobalt(III) Imido
Complexes Supported by Tris(Carbene) Ligands:ꢀ Imido Insertion
45.
Li, C.; Lang, K.; Lu, H.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang,
X. P., Catalytic Radical Process for Enantioselective Amination of
C(sp3)−H Bonds. Angew. Chem. Int. Ed. 2018, 57 (51), 16837-16841.
11
ACS Paragon Plus Environment