Gen er a l Meth od for th e P a lla d iu m -Ca ta lyzed Allyla tion of
Alip h a tic Alcoh ols
Anthony R. Haight,* Eric J . Stoner, Matthew J . Peterson,† and Vandana K. Grover‡
GPRD Process Research and Development, Abbott Laboratories, Bldg. R8/ 1, 1401 Sheridan Rd.,
North Chicago, Illinois 60064-6285
anthony.haight@abbott.com
Received J une 6, 2003
A palladium catalysis-mediated approach to coupling aliphatic alcohols with allyl carbonates has
been developed. The method allows for the allylation of primary, secondary, and tertiary alcohols
efficiently under mild conditions. Limitations were explored as well as the asymmetric application
of the chemistry. Regiochemical and olefin geometry was controlled in the coupling of unsymmetrical
allylating agents. Transient allyl carbonates were observed in the coupling, which comprised the
trans-carboxylation of the allyl-carbonate with the requisite alcohol.
In tr od u ction
palladium-catalyzed allylation of alcohols has been uti-
lized to a lesser extent due to the poor nucleophilicity of
alcohols. Most examples of oxygen nucleophiles have been
limited to phenols,8 intramolecular allylations,9 substrate-
specific systems,10 or zinc11 or stannyl12 alkoxides. We
report here on a general13 method for the efficient
allylation of aliphatic primary, secondary, and tertiary
hydroxyl groups under palladium catalysis that does not
require the preparation of metal alkoxides11,12 or the
removal of inorganic salts from the reaction mixtures.
In the course of our work, we required a method for
the preparation of a substituted allyl ether appendage
on a sterically hindered alcohol under mild conditions.14
Typically, allyl ethers are prepared under strongly basic
conditions by alkylation of the metal alkoxide with allyl
halides or pseudohalides in a polar solvent15 or by
The transition metal-catalyzed allylation of nucleo-
philes is a versatile methodology in organic synthesis.1
A variety of nucleophiles such as carbanions,1,2 amines,1,3
sulfides,1,4 and sulfinates,1,5 have been shown to couple
efficiently with palladium π-allyl complexes. With ad-
vances in regioselective6 and enantioselective7 reactions,
the utility of this chemistry continues to expand. The
† Current address: Theravance, Inc., 901 Gateway Blvd., South
San Francisco, CA 94080.
‡ Current address: Department of Microbiology and Immunology,
Vanderbilt University School of Medicine, Nashville, TN 37232-0146.
(1) (a) Comprehensive Asymmetric Catalysis; J acobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol 2. (b) Trost, B.
M.; Van Vranken, D. L. Chem Rev. 1996, 96, 395. (c) Shibasaki, M. In
Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; J AI
Press: Greenwich, CT, 1996; Vol. 5. (d) Tsuji, J . Palladium Reagents
and Catalysts: Innovations in Organic Synthesis; J ohn Wiley and
Sons: New York, 1995. (e) Harrington, P. J . In Comprehensive
Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson,
G., Eds.; Pergamon Press: Oxford, 1995; Vol. 12, pp 798-903.
(2) Some recent examples of allylic alkylations: (a) Pedersen, T. M.;
Hansen, E. L.; Kane, J .; Rein, T.; Helquist, P.; Norrby, P.-O.; Tanner,
D. J . Am. Chem. Soc. 2001, 123, 9738. (b) Nakamura, H.; Aoyagi, K.;
Shim, J .-G.; Yamamoto, Y. J . Am. Chem. Soc. 2001, 123, 372. (c) Trost,
B. M.; Madsen, R.; Guile, S. D.; Brown, B. J . Am. Chem. Soc. 2000,
122, 5947. (d) Krafft, M. E.; Wilson, A. M.; Fu, Z.; Procter, M. J .; Dasse,
O. A. J . Org. Chem. 1998, 63, 1748.
(7) (a) Trost, B. M.; Oslob, J . D. J . Am. Chem. Soc. 1999, 121, 3057.
(b) Trost, B. M.; Ariza, X. J . Am. Chem. Soc. 1999, 121, 10727. (c)
Pfaltz, A. J . Heterocycl. Chem. 1999, 36, 1437. (d) Ruwano, R.; Nishio,
R.; Ito, Y. Org. Lett. 1999, 1, 837. (e) Hayashi, T.; Kawatsura, M.;
Uozomi, Y. Chem. Commun. 1997, 561. (f) Helmchen, G.; Kudis, S.;
Sennhenn, P.; Steinhagen, H. Pure Appl. Chem. 1997, 69, 513. (g)
Trost, B. M. Chem. Rev. 1996, 96, 355.
(8) (a) Goux, C.; Massacret, M.; Lhoste, P.; Sinou, D. Organometallics
1995, 14, 4585. (b) Goux, C.; Lhoste, P.; Sinou, D. Synlett. 1992, 725.
(c) Larock, R. C.; Lee, N. H. Tetrahedron Lett. 1991, 32, 6315. (d)
Muzart, J .; Genet, J .-P.; Denis, A. J . Organomet. Chem. 1987, 326,
C23.
(9) (a) Burke, S. D.; J iang, L. Org. Lett. 2001, 3, 1953. (b) Vares, L.;
Rein, T. Org. Lett. 2000, 2, 2611. (c) Labrosse, J .-R.; Poncet, C.; Lhoste,
P.; Sinou, D. Tetrahedron: Asymetry 1999, 10, 1069. (d) Fournier-
Nguefack, C.; Lhoste, P.; Sinou, D. J . Chem. Res., Synop. 1998, 105.
(e) Thorey, C.; Wilken, J .; Henin, F.; Martens, J .; Mehler, T.; Muzart,
J . Tetrahedron Lett. 1995, 36, 5527. (f) Massacret, M.; Goux, C.; Lhoste,
P.; Sinou, D. Tetrahedron Lett. 1994, 35, 6093. (g) Oltvoort, J . J .;
Kloosterman, M.; Van Boom, J . H. Recl. Trav. Chim. Pays-Bas 1983,
102, 501.
(3) Some recent examples of allylic aminations: (a) Konno, T.;
Nagata, K.; Ishihara, T.; Yamanaka, H. J . Org. Chem. 2002, 67, 1768.
(b) You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X. J . Am.
Chem. Soc. 2001, 123, 7471. (c) Tietze, L. F.; Schirok, H.; Wohrmann,
M.; Schrader, K. J . Org. Chem. 2000, 65, 2433. (d) Sirisoma, N. S.;
Woster, P. M. Tetrahedron Lett. 1998, 39, 1489.
(4) Some recent examples of sulfides: (a) Divekar, S.; Safi, M.;
Soufiaoui, M.; Sinou, D. Tetrahedron 1999, 55, 4369. (b) Ishiyama, T.;
Mori, M.; Suzuki, A.; Miyaura, N. J . Organomet. Chem. 1996, 525,
225. (c) Goux, C.; Lhoste, P., Sinou, D. Tetrahedron 1994, 50, 10321.
(d) Moreno-Manas, M.; Pleixats, R.; Villarroya, M. Tetrahedron 1993,
49, 1465.
(5) Some recent examples of sulfinates: (a) Danjo, H.; Tanaka, D.;
Hayashi, T.; Uozumi, Y. Tetrahedron 1999, 55, 14341. (b) Hiroi, K.;
Makino, K. Chem. Pharm. Bull. 1988, 36, 1744. (c) Hiroi, K., Makino,
K. Chem. Lett. 1986, 617.
(6) (a) Trost, B. M.; Toste, F. D. J . Am. Chem. Soc. 1999, 121, 4545.
(b) Blacker, A. J .; Clarke, M. L.; Loft, M. S.; Williams, J . M. J . Org.
Lett. 1999, 1, 1969. (c) Poli, G.; Scolastico, C. Chemtracts 1999, 12,
822.
(10) (a) Trost, B. M.; McEachern, E. J .; Toste, F. D. J . Am. Chem.
Soc. 1998, 120, 12702. (b) Cuiper, A. D.; Kellogg, R. M. Chem. Commun.
1998, 655.
(11) Kim, H.; Lee, C. Org Lett. 2002, 4, 4369.
(12) (a) Keinan, E.; Sahai, M.; Roth, Z. J . Org. Chem. 1985, 50, 3558.
(b) Tsuji, J .; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 4713.
(13) An application of this chemistry has already been published
on the basis of personal communications: Marmsa¨ter, F. P.; Vanecko,
J . A.; West, F. G. Tetrahedron 2002, 58, 2027.
10.1021/jo0301907 CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/24/2003
8092
J . Org. Chem. 2003, 68, 8092-8096