534
F. Macleod et al.
LETTER
On treatment of 74, bridged lactam 75 was isolated in
41% yield. Returning to efforts to solvolyze this bridged
amide, 75 was heated in methanol under reflux in the pres-
ence of TfOH for a period of 64 hours, followed by a to-
sylation step afforded nine-membered-ring product 76 in
83% overall yield (Scheme 9).
References and Notes
(1) (a) Aubé, J.; Milligan, G. L. J. Am. Chem. Soc. 1991, 113,
8965. (b) Milligan, G. L.; Mossman, C. J.; Aubé, J. J. Am.
Chem. Soc. 1995, 117, 10449. (c) Huh, C. W.; Somal, G. K.;
Katz, C. E.; Pei, H.; Zeng, Y.; Douglas, J. T.; Aubé, J. J. Org.
Chem. 2009, 74, 7618. (d) See also:Kumar, P. S.; Kapat, A.;
Baskaran, S. Tetrahedron Lett. 2008, 49, 1241.
(2) (a) Pearson, W. H.; Hutta, D. A.; Fang, W. K. J. Org. Chem.
2000, 65, 8326. (b) Pearson, W. H.; Schkeryantz, J. M.
Tetrahedron Lett. 1992, 33, 5291. (c) Pearson, W. H.;
Walavalkar, R.; Schkeryantz, J. M.; Fang, W. K.;
Blickensdorf, J. D. J. Am. Chem. Soc. 1993, 115, 10183.
(d) See also:Reddy, P. G.; Baskaran, S. J. Org. Chem. 2004,
69, 3093. (e) Kapat, A.; Nyfeler, E.; Giuffredi, G. T.;
Renaud, P. J. Am. Chem. Soc. 2009, 131, DOI: 10.1021/
ja908933s.
In summary, it has been demonstrated that the normal
mechanistic pathway of the Aubé–Schmidt reaction can
be diverted to selectively form bridged lactams in an effi-
cient manner when a 2-(2-azidoethyl)cycloalkanone is
used. In this case, the normal fused ring product would in-
corporate an azetidine, and the strain associated with the
formation of this small ring renders the alternative path-
way to the bridged amide product more efficient.
(3) Schmidt, K. F. Ber. Dtsch. Chem. Ges. 1924, 57, 704.
(4) For reviews, see: (a) Lang, S.; Murphy, J. A. Chem. Soc.
Rev. 2006, 35, 146. (b) Nyfeler, E.; Renaud, P. Chimia
2006, 60, 276. (c) Grecian, S.; Aubé, J. In Organic Azides:
Synthesis and Applications; Bräse, S.; Banert, K., Eds.;
Wiley-VCH: Weinheim, 2009, 191. (d) Bräse, S.; Gil, C.;
Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed. 2005,
44, 5188.
(5) Lee, H. L.; Aubé, J. Tetrahedron 2007, 63, 9007.
(6) (a) Yao, L.; Aubé, J. J. Am. Chem. Soc. 2007, 129, 2766.
(b) Ribelin, T.; Katz, C. E.; English, D. G.; Smith, S.;
Manukyan, A. K.; Day, V. W.; Neuenswander, B.; Poutsma,
J. L.; Aubé, J. Angew. Chem. Int. Ed. 2008, 47, 6233.
(c) Katz, C. E.; Aubé, J. J. Am. Chem. Soc. 2003, 125, 13948.
(7) Katz, C. E.; Ribelin, T.; Withrow, D.; Basseri, Y.;
Manukyan, A. K.; Bermudez, A.; Nuera, C. G.; Day, V. W.;
Powell, D. R.; Poutsma, J. L.; Aubé, J. J. Org. Chem. 2008,
73, 3318.
Experimental Section (see Supplementary Information file for
details of other experimental procedures and supporting data).
Typical Procedure for Schmidt Reactions
To a solution of 2-(2-azidoethyl)-2-(4-methoxy-phenyl)cyclohex-
anone (42) (0.10 g, 0.37 mmol, 1.0 equiv) in CH2Cl2 (5 mL) at 0 °C
was added dropwise TiCl4 (0.08 ml, 0.74 mmol, 2.0 equiv). This
mixture was stirred allowed to warm to r.t. and was stirred for 16 h.
The reaction was diluted by the addition of CH2Cl2 (15 mL) and
NaOH solution (2 M, 10 mL). This mixture was stirred vigorously
for 30 min. The organic phase was separated, washed with NaOH
solution (2 × 10 mL) and with sat. brine solution (2 × 20 mL). The
organic extracts were combined, dried over anhyd Na2SO4, filtered,
and concentrated at reduced pressure. The crude product was puri-
fied by column chromatography (PE and EtOAc in a 10:1 ratio and
increasing level of EtOAc during elution before changing to CH2Cl2
and MeOH in a 50:1 ratio and gradually increasing level of MeOH
during elution).
(8) Szostak, M.; Yao, L.; Aubé, J. Org. Lett. 2009, 11, 4386.
(9) Tani, K.; Stoltz, B. M. Nature (London) 2006, 441, 731.
(10) Evans, P. A.; Holmes, A. B. Tetrahedron 1991, 47, 9131.
(11) (a) Lei, Y.; Wrobleski, A. D.; Golden, J. E.; Powell, D. R.;
Aubé, J. J. Am. Chem. Soc. 2005, 127, 4552. (b) Szostak,
M.; Aubé, J. Org. Lett. 2009, 11, 3878. (c) Szostak, M.;
Yao, L.; Aubé, J. J. Org. Chem. 2009, 74, 1869.
(12) Iyengar, R.; Schildknegt, K.; Aubé, J. Org. Lett. 2000, 2,
1625.
(13) For an alternative recent fragmentation route to macrocyclic
amides, see: Murphy, J. A.; Mahesh, M.; McPheators, G.;
Anand, R. V.; McGuire, T. M.; Carling, R.; Kennedy, A. R.
Org. Lett. 2007, 9, 3233.
(14) (a) Corr, M.; Gibson, K.; Kennedy, A. R.; Murphy, J. A.
J. Am. Chem. Soc. 2009, 131, 9174. (b) Corr, M. J.;
Roydhouse, M. D.; Gibson, K. F.; Zhou, S.-Z.; Kennedy,
A. R.; Murphy, J. A. J. Am. Chem. Soc. 2009, 131, DOI:
10.1021/ja908191k.
(15) Benchekroun-Mounir, N.; Dugat, D.; Gramain, J.-C.;
Husson, H.-P. J. Org. Chem. 1993, 58, 6457.
6-(4-Methoxyphenyl)-1-azabicyclo[4.2.1]nonan-9-one (44) was
isolated as a colorless oil (0.09 g, 97%). ESI-HRMS: m/z [M + H]+
calcd for C15H20N1O2: 246.1489; found: 246.1488. IR (neat): 3040
(m), 2945 (s), 2901 (s), 2838 (m), 1705 (s), 1611 (m), 1519 (s), 1443
(s), 1380 (s), 1295 (s), 1251 (s), 1205 (m), 1185 (s), 1087 (m), 1032
(s), 890 (m), 835 (s), 761 (m) cm–1. 1H NMR (400 MHz, CDCl3):
d = 1.80–1.99 (6 H, m, CH2), 2.23–2.39 (2 H, m, CH2), 2.83 (1 H,
m, CH2), 3.30 (1 H, dt, J = 10.9, 8.8 Hz, CH2), 3.57 (1 H, ddd,
J = 10.9, 9.5, 1.8 Hz, CH2), 3.83–3.86 (4 H, m, CH2 and OCH3),
6.89 (2 H, m, ArH), 7.46 (2 H, m, ArH). 13C NMR (100 MHz,
CDCl3): d = 24.2 (CH2), 24.9 (CH2), 32.2 (CH2), 40.1 (CH2), 47.4
(CH2), 48.3 (CH2), 53.4 (C), 55.5 (CH3), 113.9 (CH), 128.2 (CH),
135.1 (C), 158.4 (C), 187.7 (C). LRMS (CI): m/z (%) = 263 (38) [M
+ NH4]+, 246 (100).
Supporting Information for this article is available online at
(16) For interception of alternative azide rearrangements by
arenes, see: Lang, S.; Kennedy, A. R.; Murphy, J. A.; Payne,
A. H. Org. Lett. 2003, 5, 3655.
(17) Khoukhi, M.; Vaultier, M.; Carrié, R. Tetrahedron Lett.
1986, 27, 1031.
Acknowledgment
We thank the EPRSC and the University of Strathclyde for funding
and the EPRSC National Mass Spectrometry Service Centre,
Swansea for mass spectra.
(18) (a) Corey, E. J.; Enders, D. Chem. Ber. 1978, 111, 1337.
(b) Corey, E. J.; Enders, D. Chem. Ber. 1978, 111, 1362.
(19) These compounds were isolated as single isomers. The most
likely stereochemistry of alkylation of the decalone enolate
would afford 70 and methanolysis would convert this into
71.
Synlett 2010, No. 4, 529–534 © Thieme Stuttgart · New York