Table 4 Scope of aldehydesa
donating substituent at C4 proceeded in a moderate yield, but
with excellent enantioselectivity (entry 3). The replacement of the
(E)-ethyl-4-(2-formylphenoxy)but-2-enoate (1a) with (E)-methyl-
4-(2-formylphenoxy)but-2-enoate (1h) was also able to provide
good yield and enantioselectivity (entry 7).
In summary, we have disclosed a Brønsted acid-catalyzed
asymmetric intramolecular 1,3-dipolar cycloaddition of alde-
hydes bearing dipolarophile functionalities with a-aryl amino
esters. The phosphoric acid 4g enabled the reaction to give
hexahydromeno[4,3-b]pyrrolidine derivatives in high yield and
enantioselectivity (up to 94% yield, 94% ee). This reaction
provided a straightforward entry to privileged polycyclic pyrro-
lidine architectures, which hold great potential in the develop-
ment of related compounds as medicinal and pharmaceutical
agents.
Entry 1 (R1, R2)
5
Yield (%)b drc
ee (%)d
1
2
3
4
5
6
7
R1 = 5-Cl
R2 = Et
(1b)
60
56
42
54
76
63
84
98 : 2 53
R1 = 5-OMe
R2 = Et
(1c)
94 : 6 68
R1 = 4-OMe
R2 = Et
(1d)
95 : 5 90
95 : 5 70
98 : 2 78
97 : 3 68
99 : 1 74
Acknowledgements
We are grateful for financial support from NSFC (20732006),
CAS, MOST (973 program 2010CB833300), and the Ministry of
Education.
R1 = 3-OMe
R2 = Et
(1e)
R1 = 3-OEt
R2 = Et
(1f)
Notes and references
1 (a) W. H. Pearson, in Studies in Natural Product Chemistry, ed.
A. U. Rahman, Elsevier, New York, 1998, vol. 1, p 323; (b) F. J. Sardina
and H. Rapoport, Chem. Rev., 1996, 96, 1825–1872; (c) I. Coldham
and R. Hufton, Chem. Rev., 2005, 105, 2765–2809; (d) G. Pandey, P.
Banerjee and S. R. Gadre, Chem. Rev., 2006, 106, 4484–4517; (e) V. Nair
and T. D. Suja, Tetrahedron, 2007, 63, 12247–12275; (f) H. Pellissier,
Tetrahedron, 2007, 63, 3235–3285; (g) L. M. Stanley and M. P. Sibi,
Chem. Rev., 2008, 108, 2887–2902.
2 M. Rosini, R. Budriesi, M. G. Bixel, M. L. Bolognesi, A. Chiarini, F.
Hucho, P. Krogsgaard-Larsen, I. R. Mellor, A. Minarini, V. Tumiatti,
P. N. R. Usherwood and C. Melchiorre, J. Med. Chem., 1999, 42, 5212–
5223.
R1 = 3-F
R2 = Et
(1g)
R1 = H
R2 = Me
(1h)e
3 (a) X. B. Yang, S. J. Luo, F. Fang, P. Liu, Y. Lu, M. Y. He and H. B. Zhai,
Tetrahedron, 2006, 62, 2240–2246; (b) M. L. Bolognesi, M. Bartolini,
A. Cavalli, V. Andrisano, M. Rosini, A. Minarini and C. Melchiorre,
J. Med. Chem., 2004, 47, 5945–5952.
4 M. L. Bolognesi, V. Andrisano, M. Bartolini, A. Minarini, M. Rosini,
V. Tumiatti and C. Melchiorre, J. Med. Chem., 2001, 44, 105–
109.
a
˚
The reaction was carried out at 0.2 mmol scale in toluene (1 mL) with 3 A
MS (400 mg) at 25 ◦C for 72 h and the ratio of 1 : 2a was 1.2 : 1. b Isolated
yield based on 2a. c The dr refers to the ratio of 5 to its isomers and was
determined by 1H NMR of crude product. d Determined by HPLC.
5 (a) C. J. Lovely and H. Mahmud, Tetrahedron Lett., 1999, 40, 2079–
2082; (b) H. Mahmud, C. J. Lovely and H. V. R. Dias, Tetrahedron,
2001, 57, 4095–4105; (c) Y. He, H. Mahmud, B. R. Wayland, H. V. R.
Dias and C. J. Lovely, Tetrahedron Lett., 2002, 43, 1171–1174; (d) B. B.
Snider, Y. Ahn and S. M. O’Hare, Org. Lett., 2001, 3, 4217–4220; (e) V.
Badarinarayana and C. J. Lovely, Tetrahedron Lett., 2007, 48, 2607–
2610.
6 P. N. Confalone and E. M. Huie, J. Am. Chem. Soc., 1984, 106, 7175–
7178.
7 R. Stohler, F. Wahl and A. Pfaltz, Synthesis, 2005, 1431–
1436.
8 (a) G. Bashiardes, I. Safir, A. S. Mohamed, F. Barbot and J. Laduranty,
Org. Lett., 2003, 5, 4915–4918; (b) G. Bashiardes, I. Safir, F. Barbot and
J. Laduranty, Tetrahedron Lett., 2003, 44, 8417–8420; (c) Y. D. Gong,
S. Najdi, M. M. Olmstead and M. J. Kurth, J. Org. Chem., 1998, 63,
3081–3086; (d) J. Posp´ısˇil and M. Pota´cˇek, Tetrahedron, 2007, 63, 337–
346; (e) G. Subramaniyan, J. Jayashankaran, R. D. R. S. Manian and R.
Raghunathan, Synlett., 2005, 1167–1169; (f) I. Kim, H.-K. Na, K. R.
Kim, S. G. Kim and G. H. Lee, Synlett., 2008, 2069–2071; (g) A. S.
Pankova, V. V. Voronin and M. A. Kuznetsov, Tetrahedron Lett., 2009,
50, 5990–5993.
(2e) was the most suitable substrate to undergo the cycloaddition
reaction in 93% yield and 94% ee (entry 4). These outcomes
are actually particularly significant in view of formidable chal-
lenges present in the construction of enantioenriched polycyclic
pyrrolidine compounds bearing quaternary stereogenic centers.11
The relative and absolute stereochemistry was assigned by X-ray
crystallography (see ESI†), and other products were assigned by
analogy.
Further exploration was focused on the generality of the
protocol for different aldehydes (Table 4). Variation of the
electronic properties of the substituent at either C3 or C5
of (E)-ethyl-4-(2-formylphenoxy)but-2-enoate was tolerable, with
good yields ranging from 54 to 76% and moderate to good
enantioselectivities ranging from 53 to 78% ee (entries 1–2
and 4–6). Notably, the cycloaddition reaction with (E)-ethyl-
4-(2-formylphenoxy)but-2-enoate (1d) bearing an electronically
9 (a) X. H. Chen, W. Q. Zhang and L. Z. Gong, J. Am. Chem. Soc.,
2008, 130, 5652–5653; (b) W. J. Liu, X. H. Chen and L. Z. Gong,
Org. Lett., 2008, 10, 5357–5360; (c) J. Yu, L. He, X. H. Chen, J. Song,
2018 | Org. Biomol. Chem., 2010, 8, 2016–2019
This journal is
The Royal Society of Chemistry 2010
©