(for I > 2s(I)) = 0.0322, wR2 (for all data) = 0.0850, max./min.
Leonard, Angew. Chem., Int. Ed. Engl., 1969, 8, 962–974; (c) T.-H.
Chuang and K. B. Sharpless, Org. Lett., 2000, 2, 3555–3557; (d) V. H.
Dahanukar and A. I. Zavialov, Curr. Opin. Drug Discov. Dev., 2002, 5,
918–927.
-3
˚
residual electron density = 1.191/-1.253 e A .
Crystal structure data of complex 3d (C24H32NO5PFeSi2W).
3
7 For 1,2l -azaphosphiridines, see: (a) E. Niecke, A. Seyer and D.-A.
Crystal size 0.20 ¥ 0.20 ¥ 0.08 mm, triclinic, P-1, a = 14.5415(2),
Wildbredt, Angew. Chem., 1981, 93, 687–688; (b) N. Dufour, A.-M.
Camminade and J.-P. Majoral, Tetrahedron Lett., 1989, 30, 4813–4814.
˚
b = 16.5338(2), c = 19.5865(2) A, a = 109.0050(7), b = 90.3535(6),
◦
3
-3
5
˚
8 For 1,2l -azaphosphiridines, see: (a) K. Burger, J. Fehn and W. Thenn,
g = 97.4184 (6) , V = 4409.30(9) A , Z = 6, rc = 1.675 Mg m ,
2qmax = 58◦, collected (independent) reflections = 49604 (22997),
Rint = 0.0853, m = 4.572 mm-1, 946 refined parameters, 0 restraints,
R1 (for I > 2s(I)) = 0.0421, wR2 (for all data) = 0.0738, max./min.
Angew. Chem., 1973, 85, 542; K. Burger, J. Fehn and W. Thenn, Angew.
Chem. Int. Ed. Engl., 1973, 12, 502–503; (b) E. Niecke and W. Flick,
Angew. Chem., 1975, 87, 355–356; E. Niecke and W. Flick, Angew.
Chem., Int. Ed. Engl., 1975, 14, 363–364; (c) E. Niecke, J. Bo¨ske, B.
Krebs and M. Dartmann, Chem. Ber., 1985, 118, 3227–3240; (d) M. J. P.
Harger and A. Williams, Tetrahedron Lett., 1986, 27, 2313–2314 (here,
the azaphosphiridine P-oxide was claimed as reactive intermediate).
9 R. Streubel, J. Jeske, P. G. Jones and R. Herbst-Irmer, Angew. Chem.,
1994, 106, 115–117; R. Streubel, J. Jeske, P. G. Jones and R. Herbst-
Irmer, Angew. Chem., Int. Ed. Engl., 1994, 33, 80–82.
-3
˚
residual electron density = 1.989/-1.823 e A .
Crystal structure data of complex 8a (C23H34N3O5PSi2W).
Crystal size 0.32 ¥ 0.24 ¥ 0.12 mm, triclinic, P-1, a = 9.8089(4),
˚
b = 10.0809(5), c = 16.4987(9) A, a = 86.801(2), b = 87.041(3),
◦
3
-3
˚
g = 66.682(3) , V = 1495.07(13) A , Z = 2, rc = 1.563 Mg m ,
2qmax = 60◦, collected (independent) reflections = 17963 (8457),
Rint = 0.0587, m = 4.032 mm-1, 325 refined parameters, 0 restraints,
R1 (for I > 2s(I)) = 0.0319, wR2 (for all data) = 0.0561, max./min.
10 For the use of Li/Cl phosphinidenoid complex 5 in the synthesis of
¨
oxaphosphirane and 2H-azaphosphirene complexes, see: A. Ozbolat,
G. von Frantzius, J. Marinas Pe´rez, M. Nieger and R. Streubel, Angew.
¨
Chem., 2007, 119, 9488–9491; A. Ozbolat, G. von Frantzius, J. Marinas
Pe´rez, M. Nieger and R. Streubel, Angew. Chem., Int. Ed., 2007, 46,
9327–9330.
-3
˚
residual electron density = 1.501/-1.330 e A .
11 R. Streubel, A. Ostrowski, H. Wilkens, F. Ruthe, J. Jeske and P. G.
Jones, Angew. Chem., 1997, 109, 409–413; R. Streubel, A. Ostrowski,
H. Wilkens, F. Ruthe, J. Jeske and P. G. Jones, Angew. Chem., Int. Ed.
Engl., 1997, 36, 378–381.
12 H. Wilkens, F. Ruthe, P. G. Jones and R. Streubel, Chem.–Eur. J., 1998,
4, 1542–1553.
13 R. Streubel, H. Wilkens, F. Ruthe and P. G. Jones, Chem. Commun.,
1999, 2127–2128.
14 R. Streubel, Coord. Chem. Rev., 2002, 227, 175–192.
15 M. J. M. Vlaar, P. Valkier, F. J. J. de Kanter, M. Schakel, A. W. Ehlers,
A. L. Spek, M. Lutz and K. Lammertsma, Chem.–Eur. J., 2001, 7,
3551–3557.
Crystal structure data of complex 8d (C27H38N3O5PSi2W).
Crystal size 0.14 ¥ 0.13 ¥ 0.03 mm, monoclinic, P21 (No. 4),
˚
a = 10.642(1), b = 13.2433(8), c = 11.749(1) A, b = 91.68(0),
V = 1655.14(27) A , Z = 2, rc = 1.628 Mg m , 2qmax = 51◦,
collected (independent) reflections = 5726 (4789), Rint = 0.0505,
m = 4.069 mm-1, 370 refined parameters, 1 restraints, R1 (for I >
2s(I)) = 0.0365, wR2 (for all data) = 0.0724, max./min. residual
3
-3
˚
-3
˚
electron density = 1.159/-1.988 e A .
16 T. P. M. Goumanns, A. W. Ehlers, M. J. M. Vlaar, S. J. Strand and K.
Lammertsma, J. Organomet. Chem., 2002, 643–644, 369–375.
17 N. H. Tran Huy, L. Ricard and F. Mathey, Heteroat. Chem., 1998, 9,
597–600.
18 H. Helten, M. Engeser, D. Gudat, R. Schilling, G. Schnakenburg, M.
Nieger and R. Streubel, Chem.–Eur. J., 2009, 15, 2602–2616.
19 A. Oezbolat, G. von Frantzius, W. Hoffbauer and R. Streubel, Dalton
Trans., 2008, 2674–2676.
20 R. Streubel, M. Bode, J. Marinas Pe´rez, G. Schnakenburg, J. Daniels,
M. Nieger and P. G. Jones, Z. Anorg. Allg. Chem., 2009, 635, 1163–1171.
21 M. Bode, J. Daniels and R. Streubel, Organometallics, 2009, 28, 4636–
4638.
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft,
the SFB 624 “Template”, the Fonds der Chemischen Industrie
(Ke´kule grant for H. Helten) and the COST action CM0802
“PhoSciNet” is gratefully acknowledged; furthermore we thank
Prof. Dr B. Engels and the John von Neumann Institute (HBN12)
for computing time and Dr M. Engeser for FT-MS.
22 H. Helten, J. Marinas Pe´rez, J. Daniels and R. Streubel,
Organometallics, 2009, 28, 1221–1226.
References
23 R. Streubel, A. Ostrowski, S. Priemer, U. Rohde, J. Jeske and P. G.
Jones, Eur. J. Inorg. Chem., 1998, 257–261.
1 A. Padwa, Acc. Chem. Res., 1976, 9, 371–378.
2 (a) P. Gilgen, H. Heimgartner, H.-J. Hansen and H. Schmidt, Heterocy-
cles, 1977, 6, 143; (b) H.-J. Hansen and H. Heimgartner, in 1,3-Dipolar
Cycloaddition Chemistry, (ed.: A. Padwa), Wiley, New York, 1984, ch.
2, pp. 177; (c) H. Bader and H.-J. Hansen, Helv. Chim. Acta, 1978, 61,
286–304; (d) H. Heimgartner, Angew. Chem., 1991, 103, 271–297; H.
Heimgartner, Angew. Chem., Int. Ed. Engl., 1991, 30, 238–264.
3 A. K. Yudin, Aziridines and epoxides in organic synthesis, (ed.), Wiley-
VCH, Weinheim, 2006.
24 M. M. Sprung, Chem. Rev., 1940, 26, 297–338.
25 (a) S. S. Al-Showiman, I. M. Al-Najjar and A. M. Al-Shalaan,
Spectrochim. Acta, Part A, 1987, 43, 1055–1058; (b) D. M. Robertson,
J. Org. Chem., 1960, 25, 47–49.
26 (a) T. Morimoto and M. Sekiya, Chem. Lett., 1985, 1371–1372; (b) C.
Spinu, A. Kriza, M. Mateescu and L. Spinu, J. Soc. Chim. Tunis., 2001,
4, 1383–1387.
27 I. M. Al-Najjar, A. M. Abdulrahman, J. K. Al-Refai, L. A. Al-
Shabanah and L. A. Mutabagani, Transition Met. Chem., 2002, 27,
799–804.
28 (a) R. A. Jones and S. M. Pemberton, J. Chem. Res., Synop., 1977,
8, 191; (b) F. A. Bottino, M. L. Longo, D. Sciotto and M. Torre,
Can. J. Chem., 1981, 59, 1205–1207.
29 Only for complex 3e a diasteromeric complex 3e¢ was observed
monitoring the reaction with 31P NMR. The ratio 3e to 3e¢ (-45.7 ppm)
is >100 : 1.
30 Generation complex 3b via this route forms two diastereomers that can
be identified by 31P NMR. The ratio 3b (major: -5.9 ppm (1J(W,P) =
271.8 Hz) to 3b¢ (minor: -38.5 ppm (1J(W,P) = 277.0 Hz) is 6.5 to 1.
31 J. Zhou, Y. Qiu, K. Feng and R.-Y. Chen, Synth. Commun., 1998, 28,
4673–4678.
4 In the Neber rearrangement 2H-azirenium derivatives were first
proposed: (a) P. W. Neber and A. Burgard, Justus Liebigs Ann. Chem.,
1932, 493, 281; (b) M. J. Hatch and D. J. Cram, J. Am. Chem. Soc.,
1953, 75, 38–44.
5 Further proposals of 2H-azirenium derivatives as reactive intermedi-
ates:(a) N. J. Leonard and B. Zwanenburg, J. Am. Chem. Soc., 1967, 89,
4456–4465; (b) N. J. Leonard, E. F. Muth and V. Nair, J. Org. Chem.,
1968, 33, 827–828; (c) M. Rens and L. Ghosez, Tetrahedron Lett., 1970,
11, 3765–3768; (d) B. Parthasarathi Chandrasekhar, U. Schmid, R.
Schmid, H. Heimgartner and H. Schmid, Helv. Chim. Acta, 1975, 58,
1191–1200; (e) C. Bernard-Henriet, P. Hoet and L. Ghosez, Tetrahedron
Lett., 1981, 22, 4717–4720; (f) R. Flammang, S. Lacombe, A. Laurent,
A. Maquestiau, B. Marquet and S. Novkova, Tetrahedron, 1986, 42,
315–328.
32 Under mass spectrometry conditions, we found via electrospray ion-
6 For aziridinium derivatives, see: (a) ref. 5a; (b) D. R. Crist and N. J.
Leonard, Angew. Chem., 1969, 81, 953–1008; D. R. Christ and N. J.
ization (ESI, using acetonitrile as solvent) the formation of a species
3480 | Dalton Trans., 2010, 39, 3472–3481
This journal is
The Royal Society of Chemistry 2010
©