by silica gel chromatography. Under these conditions, ethanol
was coupled to dienes 1a-1i. With the exception of myrcene
1f and diene 1h, constitutional isomers 2 are the major products
formed. Diastereoselectivities for adducts 2a-2i range from 4:1
to >20:1 in favor of the indicated anti-isomer (Scheme 2). The
Scheme 1
.
Carbonyl Addition via Ruthenium-Catalyzed C-C
Coupling of Dienesa
Scheme 2
.
Ruthenium-Catalyzed Coupling of Ethanol to
2-Substituted Dienes 1a-1ia
a For oxidative ruthenium-catalyzed diene-alcohol C-C coupling to form
ꢀ,γ-enones, see ref 7c.
direct activation of methanol proved unfruitful, likely because
methanol dehydrogenation is energetically demanding.6 Indeed,
whereas attempted C-C couplings of methanol fail, corre-
sponding reactions of paraformaldehyde employing isopropanol
as terminal reductant proceed readily, as demonstrated in
ruthenium-catalyzed hydroxymethylations of 1,1-disubstituted
allenes and 2-substituted dienes.7b,d As ethanol dehydrogena-
tion occurs more readily than the dehydrogenation of
methanol (∆H ) +68 vs +84 kJ/mol, respectively),6 the
direct activation of ethanol in couplings to 2-substituted diene
1c was explored.7-11
a Cited yields are of material isolated by silica gel chromatography.
Conditions: (a) 80 °C, 20 h; (b) 90 °C, 20 h; (c) 90 °C, 40 h; (d) 100 °C,
40 h. See Supporting Information for detailed experimental procedures.
Using RuH(O2CC7F15)(CO)(dppb)(PPh3) as catalyst,12
a
stereochemical assignment of adducts 2a-2i is tentatively
assigned in analogy to that determined for the product obtained
from the coupling of benzyl alcohol to myrcene 1f.13
complex that was effective in related diene-formaldehyde
couplings,7b diene 1c was converted to the C-C coupling
product 2c and 3c in 78% isolated yield as a 6:1 mixture of
constitutional isomers. Notably, 2c appears as a single diaste-
reomer. Thus, C-C coupling occurs predominantly at the
2-position of the diene, resulting in diastereoselective formation
of an all-carbon quaternary center. In most cases, regioisomers
2c and 3c differ substantially in polarity and are easily separated
For most C-C bond-forming transfer hydrogenations
developed in our laboratory,4,7 carbonyl addition is possible
from the alcohol or aldehyde oxidation level. In the latter
case, a stoichiometric reductant such as isopropanol or formic
acid is required. Accordingly, it was found that the reductive
coupling of dienes 1a-1i to acetaldehyde can be conducted
using the same ruthenium catalyst under essentially identical
conditions employing isopropanol/acetone (1:1) as solvent
to furnish an equivalent set of adducts 2a-2i with similar
trends in regio- and diastereoselectivity (Scheme 3).
(6) For methanol dehydrogenation, DH ) +84 kJ/mol. For ethanol
dehydrogenation, DH ) +68 kJ/mol: (a) Qian, M.; Liauw, M. A.; Emig,
G. Appl. Catal. A 2003, 238, 211. (b) Lin, W.-H.; Chang, H.-F. Catal. Today
2004, 97, 181.
(7) For ruthenium catalyzed C-C bond-forming transfer hydrogenation
developed in our laboratory, see the following. Dienes: (a) Shibahara, F.;
Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6338. (b) Smejkal,
T.; Han, H.; Breit, B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 10366.
(c) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 14120. Allenes: (d) Ngai, M.-Y.; Skucas, E.; Krische, M. J. Org. Lett.
2008, 10, 2705. (e) Skucas, E.; Zbieg, J. R.; Krische, M. J. J. Am. Chem.
Soc. 2009, 131, 5054. (f) Grant, C. D.; Krische, M. J. Org. Lett. 2009, 11,
4485. (g) Zbieg, J. R.; McInturff, E. L. Org. Lett. 2010, published ASAP,
DOI:, 10.1021/ol1007235. (h) Alkynes:; Patman, R. L.; Chaulagain, M. R.;
Williams, V. M.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2066. (i)
Williams, V. M.; Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron
2009, 65, 5024. (j) Enynes: Patman, R. L.; Williams, V. M.; Bower, J. F.;
(8) For related catalytic C-C couplings that occur by way of nucleophilic
ruthenium p-allyls, see: (a) Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y.
J. Organomet. Chem. 1989, 369, C51. (b) Kondo, T.; Ono, H.; Satake, N.;
Mitsudo, T.-a.; Watanabe, Y. Organometallics 1995, 14, 1945. (c) Kondo,
T.; Hiraishi, N.; Morisaki, Y.; Wada, K.; Watanabe, Y.; Mitsudo, T.-a.
Organometallics 1998, 17, 2131. (d) Yu, C.-M.; Lee, S.; Hong, Y.-T.; Yoon,
S.-K. Tetrahedron Lett. 2004, 45, 6557. (e) Omura, S.; Fukuyama, T.;
Horiguchi, J.; Murakami, Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094.
(9) For selected reviews of ruthenium-catalyzed C-C coupling beyond
olefin metathesis, see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem.
ReV. 2001, 101, 2067. (b) Kondo, T.; Mitsudo, T.-a. Curr. Org. Chem.
2002, 6, 1163. (c) De´rien, S.; Monnier, F.; Dixneuf, P. H. Top. Organomet.
Chem. 2004, 11, 1.
Krische, M. J. Angew. Chem., Int. Ed. 2008, 47, 5220
.
Org. Lett., Vol. 12, No. 12, 2010
2845