Inorganic Chemistry
Article
Enchainment Cooperativity between Different Single-Site Olefin
Polymerization Catalysts by Ion Pairing with a Binuclear Cocatalyst.
J. Am. Chem. Soc. 2002, 124 (47), 13966−13967. (g) Buchwalter, P.;
porous materials: Synthesis and property. Coord. Chem. Rev. 2017,
(7) (a) Bao, H. L.; Zhou, J.; Wang, Z.; Guo, Y. L.; You, T. P.; Ding,
K. L. Insight into the mechanism of the asymmetric ring-opening
aminolysis of 4,4-dimethyl-3,5,8-trioxabicyclo 5.1.0 octane catalyzed
by titanium/BINOLate/water system: Evidence for the Ti-
(BINOLate)(2)-bearing active catalyst entities and the role of
water. J. Am. Chem. Soc. 2008, 130 (31), 10116−10127. (b) Yuan,
S.; Qin, J.-S.; Li, J.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J.;
Zhang, L.; Sun, D.; Alsalme, A.; Cagin, T.; Zhou, H.-C. Retrosynthesis
of multi-component metal−organic frameworks. Nat. Commun. 2018,
9 (1), 808. (c) Liu, Y.; O’Keeffe, M.; Treacy, M. M. J.; Yaghi, O. M.
The geometry of periodic knots, polycatenanes and weaving from a
chemical perspective: a library for reticular chemistry. Chem. Soc. Rev.
2018, 47 (12), 4642−4664. (d) Shultz, A. M.; Farha, O. K.; Adhikari,
D.; Sarjeant, A. A.; Hupp, J. T.; Nguyen, S. T. Selective Surface and
Near-Surface Modification of a Noncatenated, Catalytically Active
Metal-Organic Framework Material Based on Mn(salen) Struts. Inorg.
Chem. 2011, 50 (8), 3174−3176. (e) Jiao, L.; Wang, Y.; Jiang, H.-L.;
Xu, Q. Metal-Organic Frameworks as Platforms for Catalytic
Applications. Adv. Mater. 2018, 30, 1703663.
́
Rose, J.; Braunstein, P. Multimetallic Catalysis Based on Hetero-
metallic Complexes and Clusters. Chem. Rev. 2015, 115 (1), 28−126.
(h) Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.;
Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J. M.; Reijerse, E.;
Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. Biomimetic
assembly and activation of [FeFe]-hydrogenases. Nature 2013, 499,
66. (i) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Metal−Organic Cooperative
Catalysis in C−H and C−C Bond Activation. Chem. Rev. 2017, 117
(13), 8977−9015. (j) McInnis, J. P.; Delferro, M.; Marks, T. J.
Multinuclear Group 4 Catalysis: Olefin Polymerization Pathways
Modified by Strong Metal−Metal Cooperative Effects. Acc. Chem. Res.
2014, 47 (8), 2545−2557.
(3) (a) Chen, Y.; Tan, R.; Zhang, Y.; Zhao, G.; Yin, D. Dendritic
Chiral Salen Titanium(IV) Catalysts Enforce the Cooperative
Catalysis of Asymmetric Sulfoxidation. ChemCatChem 2015, 7 (24),
4066−4075. (b) Haak, R. M.; Wezenberg, S. J.; Kleij, A. W.
Cooperative multimetallic catalysis using metallosalens. Chem.
Commun. 2010, 46 (16), 2713−2723. (c) Dong, Z.; Luo, Q.; Liu, J.
Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev.
2012, 41 (23), 7890−7908. (d) Huang, Y.-B.; Shen, M.; Wang, X.;
Shi, P.-C.; Li, H.; Cao, R. Hierarchically micro- and mesoporous
metal−organic framework-supported alloy nanocrystals as bifunc-
tional catalysts: Toward cooperative catalysis. J. Catal. 2015, 330,
452−457. (e) Breinbauer, R.; Jacobsen, E. N. Cooperative
Asymmetric Catalysis with Dendrimeric [Co(salen)] Complexes.
Angew. Chem., Int. Ed. 2000, 39 (20), 3604−3607.
(8) (a) Zhu, C.; Xia, Q.; Chen, X.; Liu, Y.; Du, X.; Cui, Y. Chiral
Metal−Organic Framework as a Platform for Cooperative Catalysis in
Asymmetric Cyanosilylation of Aldehydes. ACS Catal. 2016, 6 (11),
7590−7596. (b) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y. Chiral
nanoporous metal-metallosalen frameworks for hydrolytic kinetic
resolution of epoxides. J. Am. Chem. Soc. 2012, 134 (19), 8058−61.
(9) Lin, Z.; Zhang, Z.-M.; Chen, Y.-S.; Lin, W. Highly Efficient
Cooperative Catalysis by CoIII(Porphyrin) Pairs in Interpenetrating
Metal−Organic Frameworks. Angew. Chem., Int. Ed. 2016, 55 (44),
13739−13743.
(4) (a) Li, C. Chiral Synthesis on Catalysts Immobilized in
Microporous and Mesoporous Materials. Catal. Rev.: Sci. Eng. 2004,
46 (3−4), 419−492. (b) Zhong, M.; Li, H.; Chen, J.; Tao, L.; Li, C.;
Yang, Q. Cooperative Activation of Cobalt−Salen Complexes for
Epoxide Hydration Promoted on Flexible Porous Organic Frame-
works. Chem. - Eur. J. 2017, 23 (48), 11504−11508.
(10) Gupta, K. C.; Sutar, A. K. Catalytic activities of Schiff base
transition metal complexes. Coord. Chem. Rev. 2008, 252 (12), 1420−
1450.
(11) (a) Darensbourg, D. J.; Karroonnirun, O. Stereoselective Ring-
Opening Polymerization of rac-Lactides Catalyzed by Chiral and
Achiral Aluminum Half-Salen Complexes. Organometallics 2010, 29
(21), 5627−5634. (b) Howard, J. A.; Ilyashenko, G.; Sparkes, H. A.;
Whiting, A. Development of new transition metal catalysts for the
oxidation of a hydroxamic acid with in situ Diels−Alder trapping of
the acyl nitroso derivative. Dalton. Trans. 2007, No. 21, 2108−2111.
(c) Jammi, S.; Punniyamurthy, T. Synthesis, Structure and Catalysis
of Tetranuclear Copper (II) Open Cubane for Henry Reaction on
Water. Eur. J. Inorg. Chem. 2009, 2009 (17), 2508−2511. (d) Dare-
nsbourg, D. J.; Karroonnirun, O.; Wilson, S. J. Ring-opening
polymerization of cyclic esters and trimethylene carbonate catalyzed
by aluminum half-salen complexes. Inorg. Chem. 2011, 50 (14),
6775−6787. (e) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N.
(5) (a) Kitagawa, S.; Zhou, H.-C. Metal−organic frameworks
́
(MOFs). Chem. Soc. Rev. 2014, 43 (16), 5415−5418. (b) Ferey, G.;
́
Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.;
Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually
Large Pore Volumes and Surface Area. Science 2005, 309 (5743),
2040−2042. (c) Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G.
Metal−Organic Frameworks as Platforms for Functional Materials.
Acc. Chem. Res. 2016, 49 (3), 483−493. (d) O’Keeffe, M.; Yaghi, O.
M. Deconstructing the Crystal Structures of Metal−Organic Frame-
works and Related Materials into Their Underlying Nets. Chem. Rev.
2012, 112 (2), 675−702. (e) Zhou, H.-C. J.; Kitagawa, S. Metal−
Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43 (16), 5415−
5418.
Highly Enantio-and Diastereoselective Hetero-Diels
Alder Re-
(6) (a) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M.
The Chemistry and Applications of Metal-Organic Frameworks.
Science 2013, 341 (6149), 1230444. (b) Zhu, L.; Liu, X.-Q.; Jiang, H.-
L.; Sun, L.-B. Metal−Organic Frameworks for Heterogeneous Basic
Catalysis. Chem. Rev. 2017, 117 (12), 8129−8176. (c) Doonan, C. J.;
Sumby, C. J. Metal−organic framework catalysis. CrystEngComm
2017, 19 (29), 4044−4048. (d) Liu, J.; Chen, L.; Cui, H.; Zhang, J.;
Zhang, L.; Su, C.-Y. Applications of metal−organic frameworks in
heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43
(16), 6011−6061. (e) Zhang, T.; Lin, W. Metal−organic frameworks
for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014,
43 (16), 5982−5993. (f) Yoon, M.; Srirambalaji, R.; Kim, K.
Homochiral Metal−Organic Frameworks for Asymmetric Heteroge-
neous Catalysis. Chem. Rev. 2012, 112 (2), 1196−1231. (g) Gascon,
actions Catalyzed by New Chiral Tridentate Chromium (III)
Catalysts. Catalysts 1999, 1, 2. (f) Jędrzkiewicz, D.; Marszałek-
Harych, A.; Ejfler, J. Serendipitous Synthesis Found in the Nuances of
Homoleptic Zinc Complex Formation. Inorg. Chem. 2018, 57 (14),
8169−8180.
(12) Chaurin, V.; Constable, E. C.; Housecroft, C. E. What is the
coordination number of copper(II) in metallosupramolecular
chemistry? New J. Chem. 2006, 30 (12), 1740−1744.
(13) Sheldrick, G. Crystal structure refinement with SHELXL. Acta
Crystallogr., Sect. C: Struct. Chem. 2015, 71 (1), 3−8.
(14) Spek, A. Single-crystal structure validation with the program
PLATON. J. Appl. Crystallogr. 2003, 36 (1), 7−13.
(15) (a) Ingleson, M. J.; Barrio, J. P.; Bacsa, J.; Dickinson, C.; Park,
H.; Rosseinsky, M. J. Generation of a solid Bronsted acid site in a
chiral framework. Chem. Commun. 2008, 11, 1287−1289. (b) Jung, S.;
Oh, M. Monitoring Shape Transformation from Nanowires to
Nanocubes and Size-Controlled Formation of Coordination Polymer
Particles. Angew. Chem., Int. Ed. 2008, 47 (11), 2049−2051. (c) Jeon,
Y.-M.; Heo, J.; Mirkin, C. A. Dynamic Interconversion of Amorphous
Microparticles and Crystalline Rods in Salen-Based Homochiral
́
J.; Corma, A.; Kapteijn, F.; Llabres i Xamena, F. X. Metal Organic
Framework Catalysis: Quo vadis? ACS Catal. 2014, 4 (2), 361−378.
(h) Liu, Y.; Xuan, W.; Cui, Y. Engineering Homochiral Metal-Organic
Frameworks for Heterogeneous Asymmetric Catalysis and Enantio-
selective Separation. Adv. Mater. 2010, 22 (37), 4112−4135. (i) Yuan,
G.; Jiang, H.; Zhang, L.; Liu, Y.; Cui, Y. Metallosalen-based crystalline
G
Inorg. Chem. XXXX, XXX, XXX−XXX