ORGANIC
LETTERS
2011
Vol. 13, No. 4
732–735
Reductive Lithiation of Methyl Substituted
Diarylmethylsilanes: Application to
Silanediol Peptide Precursors
ꢀ
Dacil Hernandez, Rasmus Mose, and Troels Skrydstrup*
ꢀ
Center for Protein Structures, Department of Chemistry and Interdisciplinary
Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Received December 8, 2010
ABSTRACT
Reductive lithiation of methyl-substituted diarylmethylsilanes using lithium naphthalenide represents a practical method for the preparation of the
corresponding silyl lithium reagents. Their addition to chiral sulfinimines affords versatile precursors to silanols and silanediols. The replacement
of the currently used diphenylsilane motif by a more labile diarylsilane moiety allows the selective hydrolysis of one or two aryl groups by
treatment with TFA.
Lithiosilanes play a valuable role as silicon transfer
reagents in organic and organometallic chemistry.1 In
organic synthesis, they have been used principally for the
nucleophilic introduction of protecting groups2 and also to
attach silyl groups to carbon as control elements for the
regio- and stereoselectivity in the synthesis of complex
molecules.3 The discovery of biologically active silicon-
containing structures in the quest for drug development
has increased the use of silylllithium reagents for the
incorporation of silicon in organic compounds.4
Sieburth and co-workers in 1998,5 as a new mimic of the
tetrahedral intermediate in peptide hydrolysis (Scheme 1).
The same group demonstrated that a range of these
silanediol isosteres displayed high inhibitory activities
against both aspartic and metalloproteases.5b,d,f
In previous work,6 we have reported an efficient ap-
proach to silanediol peptide mimics, which involves the
(5) (a) Sieburth, S. M.; Nittoli, T.; Mutahi, A. M.; Guo, L. Angew.
Chem., Int. Ed. 1998, 37, 812. (b) Chen, C.-A.; Sieburth, S. M.; Glekas,
A.; Hewitt, G. W.; Trainor, G. L.; Erickson-Viitanen, S.; Garber, S. S.;
Cordova, B.; Jeffry, S.; Klabe, R. M. Chem. Biol. 2001, 8, 1161. (c)
Mutahi, M. W.; Nittoli, T.; Guo, L.; Sieburth, S. M. J. Am. Chem. Soc.
2002, 124, 7363. (d) Kim, J.; Glekas, A.; Sieburth, S. M. Bioorg. Med.
Chem. Lett. 2002, 12, 3625. (e) Kim, J.; Sieburth, S. M. J. Org. Chem.
2004, 69, 3008. (f) Kim, J.; Sieburth, S. M. Bioorg. Med. Chem. Lett.
2004, 14, 2853. (g) Kim, J.; Hewitt, G.; Carroll, P.; Sieburth, S. M.
J. Org. Chem. 2005, 70, 5781. (h) Juers, D. H.; Kim, J.; Matthews, B. W.;
Sieburth, S. M. Biochemistry 2005, 44, 16524. (i) Sieburth, S. M.; Chen,
C.-A. Eur. J. Org. Chem. 2006, 311.
One of the most recent and notable examples of silicon in
bioactive molecules is the silanediol group, introduced by
(1) (a) Tamao, K; Kawachi, A. Adv. Organomet. Chem. 1995, 38, 1.
(b) Lickiss, P. D.; Smith, C. M. Coord. Chem. Rev. 1995, 145, 75. (c)
Sekiguchi, A.; Lee, V. Y.; Nanjo, M. Coord. Chem. Rev. 2000, 210, 11. (d)
Uhlig, W. J. Organomet. Chem. 2003, 685, 70.
(2) (a) Fleming, I. Chemtracts: Org. Chem. 1996, 9, 1. (b) Jones,
G. R.; Landais, Y. Tetrahedron 1996, 52, 7599.
(3) (a) George, M. V.; Peterson, D. J.; Gilman, H. J. Am. Chem. Soc.
1960, 82, 403. (b) Fleming, I.; Barbero, A.; Walker, D. Chem. Rev. 1997,
97, 2063. (c) Lee, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 1872.
(4) (a) Organ, M. G.; Buon, C.; Decicco, C. P.; Combs, A. P. Org.
Lett. 2002, 4, 2683. (b) Ballweg, D. M.; Miller, R. C.; Gray, D. L.;
Scheidt, K. A. Org. Lett. 2005, 7, 1403.
(6) (a) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup,
T. J. Org. Chem. 2007, 72, 10035. (b) Nielsen, L.; Skrydstrup, T. J. Am.
ꢀ
Chem. Soc. 2008, 130, 13145. (c) Hernandez, D.; Lindsay, K. B.;
Nielsen, L.; Mittag, T.; Bjerglund, K.; Friis, S.; Mose, R.; Skrydstrup,
ꢀ
T. J. Org. Chem. 2010, 75, 3283. (d) Hernandez, D.; Nielsen, L.;
ꢀ
Lindsay, K. B.; Lopez-Garcıa, M. A.; Bjerglund, K.; Skrydstrup, T.
Org. Lett. 2010, 12, 3528.
r
10.1021/ol102968g
Published on Web 01/19/2011
2011 American Chemical Society