2584
H. M. Meshram et al. / Tetrahedron Letters 51 (2010) 2580–2585
Table 3 (continued)
Entry
Phenacyl bromide
1,2-Diamine
Product
Time (min)
25
Yieldb (%)
MeO
MeO
N
N
Br
Br
24
92
O
8
8a
9a
Et2N
Et2N
N
25
32
90
O
N
9
a
Reaction conditions: phenacyl bromide (1 equiv), 1,2-diamines (1 equiv), DABCO (20 mol %), in THF (4 ml).
Isolated products.
Mixture of isomers (8:2).
b
c
Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604; (d) Gazit, A.; App, H.;
McMahon, G.; Chen, J.; Levitzki, A.; Bohmer, F. D. J. Med. Chem. 1996, 39, 2170.
2. Brown In, J. D., Taylor, C. E., Wipf, P., Eds.The Chemistry of Heterocyclic
Compounds Quinoxalines: Supplements II; John Wiley and Sons: New Jersey,
2004.
3. (a) Katoh, A.; Yoshida, T.; Ohkanda, J. Heterocycles 2000, 52, 911; (b) Thomas, K.
R. J.; Velusamy, M.; Lin, J. T.; Chuen, C.-H.; Tao, Y.-T. Chem. Mater. 2005, 17,
1860; (c) Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J.
Mater. Chem 2001, 11, 2238; (d) Sascha, O.; Ru diger, F. Synlett. 2004, 1509; (e)
Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 1122.
4. (a) Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.;
Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183; (b) More, S. V.; Sastry, M. N. V.;
Yao, C.-F. Green Chem. 2006, 8, 91; (c) More, S. V.; Sastry, M. N. V.; Wang, C. C.;
Yao, C.-F. Tetrahedron Lett. 2005, 46, 6345; (d) Guo, W. X.; Jin, H. L.; Chen, J. X.;
Chen, F.; Ding, J. C.; Wu, H. Y. J. Braz. Chem. Soc. 2009, 20, 1674.
5. Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.;
Palacios, F.; de Lossantos, J. M. J. Org. Chem. 2006, 71, 5897.
6. (a) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788; (b)
Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321; (c) Robinson, R.
S.; Taylor, R. J. K. Synlett 2005, 1003.
7. Singh, S. K.; Gupta, P.; Duggineni, S.; Kundu, B. Synlett 2003, 2147.
8. Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. Tetrahedron Lett. 2007, 48, 5371.
9. Madhav, B.; Narayana Murthy, S.; Prakash Reddy, V.; Rama Rao, K.; Nageswar,
Y. V. D. Tetrahedron Lett. 2009, 50, 6025.
10. Zorn, Ch.; Gnad, F.; Salmen, S.; Herpin, T.; Reiser, O. Tetrahedron Lett. 2001, 42,
7079.
11. (a) De Souza, R. O. M. A.; Vas Concellos, M. L. A. A. Catal. Commun. 2003, 5, 21;
(b) Krishna, P. R.; Sekhar, E. R.; Kannan, V. Tetrahedron Lett. 2003, 44, 4973; (c)
Kumar, A.; Pawar, S. S. Tetrahedron 2003, 59, 5019.
12. Cecchi, L.; De Sarlo, F.; Machetti, F. Eur. J. Org. Chem. 2006, 4852.
13. Bu, X.; Jing, H.; Wang, L.; Chang, T.; Jin, L.; Liang, Y. J. Mol. Catal. A: Chem. 2006,
259, 121.
that the corresponding 2-aryl-7-methyl quinoxaline was the major
product, whereas the other isomer 2-aryl-6-methyl quinoxaline
was obtained as a minor product. While the symmetric diamines
like 4,5-dimethyl-1-2-phenylenediamine (entries 3, 8, 9, 13 and
17) with phenacyl bromides resulted in the corresponding quinox-
aline as a sole product in high yields. Further it is observed that the
presence of electron-withdrawing substituents (entries 4, 5, 10, 15,
16, 19, and 20) on the diamine ring deactivates the para amino
group. Due to this, another amino group first participates in the
reaction and leads to intermediate 8 which on cyclization and oxi-
dation gives the corresponding product (Scheme 3).
Next we have extended this protocol for the heterocyclic dia-
mines. Thus 1,2-pyridine diamine (entry 6) reacted with phenacyl
bromide and led to isomers of products in good yields. From Table
3 it can be seen that different substituted phenacyl bromides re-
acted with substituted 1,2-phenylenediamines and provided func-
tionalized quinoxalines. We have also examined phenacyl
bromides having different substituents such as NO2, CN, Cl, Br,
OH, OMe, N,N-dialkyl, and Me. The electron-rich functionalities
(entries 7–9, 10–16, and 23–25) influence the reaction and furnish
the corresponding quinoxalines in high yield. Whereas the elec-
tron-withdrawing substituents (entries 17–20 and 22) on phenacyl
bromide gave comparatively low yield of quinoxaline under iden-
tical conditions. It is worthy to mention that the present method
provides access for the synthesis of new functionalized quinoxa-
lines (entry 5, 10, 16–19, and 20) which have not been synthesized
earlier. These quinoxalines bearing the nitrile and ester functional-
ities may provide scope for further extension to build up pharma-
ceutically important molecules.
14. Sharafi, T.; Heravi, M. M. Phosphorus, Sulfur Silicon 2004, 179, 2437.
15. (a) Meshram, H. M.; Reddy, P. N.; Vishnu, P.; Sadhashiv, K.; Yadav, J. S.
Tetrahedron Lett. 2005, 46, 6607; (b) Meshram, H. M.; Reddy, P. N.; Vishnu, P.;
Sadhashiv, K.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 991; (c) Meshram, H. M.;
Kumar, D. A.; Prasad, B. R. V.; Goud, P. R. Helv.Chemi. Acta., in press.
16. (a) Varma, R. S.; Saini, R. K.; Meshram, H. M. Tetrahedron Lett. 1997, 38, 6525;
(b) Meshram, H. M.; Srinivas, D.; Yadav, J. S. Tetrahedron Lett. 1997, 38, 8743;
(c) Meshram, H. M.; Reddy, G. S.; Yadav, J. S. Tetrahedron Lett. 1997, 38, 891; (d)
Meshram, H. M.; Reddy, G. S.; Reddy, M. M.; Yadav, J. S. Tetrahedron Lett. 1998,
39, 4103; (e) Meshram, H. M.; Reddy, B. C.; Goud, P. R. Synth. Commun. 2009, 39,
2297.
In conclusion, we have demonstrated an efficient and mild
method for the synthesis of functionalized quinoxalines using
DABCO as a catalyst. This method is applicable for a variety of
phenacyl bromides and o-phenylenediamines. Moreover, this pro-
tocol provides access for the synthesis of functionalized
quinoxalines.
17. Fan, M.; Guo, L.; Liu, X.; Liu, W.; Liang, Y. Synthesis 2005, 391.
18. General procedure:
A mixture of phenacyl bromide (1 equiv) and DABCO
(20 mol %) was stirred at rt for 5 min. Then 0-phenylenediamine (1 equiv) was
added slowly and the resultant mixture was stirred at rt for stipulated time
(see Table 3). After completion of the reaction, as indicated by TLC, the mixture
was poured into water. It was extracted with ethylacetate (3 Â 15 ml), dried
over Na2SO4, and evaporated under reduced pressure. The crude product was
purified by passing through small pad of silica gel to give pure product (ethyl
acetate:hexane). All the compounds were characterized by 1H NMR, 13C NMR,
mass, and IR spectral data.19
Acknowledgments
G.S.K., P.R., and B.C.K.R. thank CSIR-UGC for the award of a fel-
lowship and to Dr. J. S. Yadav, Director IICT, for his support and
encouragement.
19. Spectral data for new compounds:
Compound 1e: mp 152–154 °C; 1H NMR (300 MHz, CDCl3): d 4.0 (s, 3H), 7.58
(m, 3H), 8.16 (d, 1H, J = 8.309 Hz), 8.24 (d, 2H, J = 8.309 Hz), 8.35 (d, 1H,
J = 2.26 Hz), 8.78 (s, 1H), 9.38 (s, 1H). 13C NMR (75 MHz, CDCl3): 52.5, 127.6,
129.1, 129.6, 129.7, 130.7, 131.5, 135.9, 140.4, 144.2, 153.1, 166.1. IR (KBr)
References and notes
1. (a) Sakata, G.; Makino, K.; Kurasawa, Y. Heterocycles 1988, 27, 2481; (b) Sato, N.
In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven,
E. F., Eds.; Elsevier Science Ltd: Oxford, 1996; p 6. Chapter 6.03; (c) Seitz, L. E.;
m
= 2923, 2852, 1714, 1542, 1444, 1291, 1251, 1172, 1089, 770, 686 cmÀ1. MS
(ESI) m/z 265 (M+1). Compound 3b: mp 134–136 °C; 1H NMR (300 MHz, CDCl3):
d 4.05 (s, 3H), 7.7 (d, 2H, J = 1.88 Hz), 8.16 (dd, 3H, J = 2.83, J = 3.02 Hz), 8.38 (d,