Communications
J = 8.3 Hz), 7.33 (dd, 1H, 6-H, J = 8.3 Hz, 6.9 Hz), 7.16 (q, 1H, HN,
J = 4.8 Hz), 6.27 (s, 1H, 3-H), 2.87 (d, 3H, H3CN, J = 4.8 Hz),
2.47 ppm (s, 3H, 2-CH3); 13C NMR ([D6]DMSO, 100 MHz): d =
159.2, 151.3, 148.3, 129.0, 128.8, 123.5, 121.7, 118.0, 98.2, 29.7,
25.7 ppm; ESI-MS: 173.1 (M+H+, 100%); IR (KBr): n˜ = 3225,
1594, 1561, 1443 cmꢀ1. HR-ESI-MS: calcd for C11H13N2: 173.1079;
found: 173.1076.
quinoline 8a instead (Scheme 4). As the amidate contained
the structure element I mentioned above, thermal cleavage of
heterocumulenes occurs with regeneration of the carbene,
Received: September 28, 2009
Published online: March 12, 2010
Keywords: carbenes · heterocycles · rearrangements ·
.
synthetic methods · zwitterions
[1] R. D. Larsen, D. Cai, Science of Synthesis, Vol. 15, Thieme,
Stuttgart, 2004, p. 389 – 496.
Scheme 4. The trapping reaction of the carbene to give amidate 11 if
both ortho positions on Ar1 are substituted.
[2] B. Stanovnik, J. Svete, Science of Synthesis, Vol. 12, Thieme,
Stuttgart, 2002, p. 15 – 205.
[3] G. M. Findlay, Recent Advances in Chemotherapy, 3rd ed.,
Churchill, London, 1951.
which then rearranges immediately to the quinoline. The
amidate is only then the main product when both o-positions
of the aryl moiety on the pyrazolium-3-carboxylate are
occupied: 11 was therefore obtained as stable adduct in
high yield from the corresponding pyrazolium-3-carboxylate
7p and 3,5-dichlorophenylisocyanate.
Control experiments showed that the pyrazolium salts 12–
15 also rearrange to 4-aminoquinolines after treatment with
base, although in lower yields (Scheme 5). The results of
Schemes 3–5 allow us to favor the mechanism shown in
Scheme 2 over an equally feasible Grob fragmentation of the
betaines 7 to 8 without an intermediate carbene.
[4] a) D. C. Warhurst, Curr. Sci. 2007, 92, 1556 – 1560; b) E. A.
therapy and Drug Resistance in Malaria, Academic Press,
[5] a) K. Sanderson, Nature 2009, DOI: 10.1038/news.2009.750;
b) O. V. Miroshnikova, T. H. Hudson, L. Gerena, D. E. Kyle,
[6] E. Paunescu, S. Susplugas, E. Boll, R. Varga, E. Mouray, I.
Grosu, P. Grellier, P. Melnyk, ChemMedChem 2009, 4, 549 – 561.
[7] a) S. Scherbakow, J. C. Namyslo, M. Gjikaj, A. Schmidt, Synlett
2009, 1964 – 1968; b) A. Schmidt, B. Snovydovych, Synthesis
Snovydovych, T. Habeck, P. Drꢀttboom, M. Gjikaj, A. Adam,
Heterocyclic Carbenes in Synthesis (Ed: S. P. Nolan), Wiley-
1309; f) T. Weskamp, V. P. W. Bꢀhm, W. A. Herrmann, J.
[9] a) C. Kꢀcher, W. A. Herrmann, J. Organomet. Chem. 1997, 532,
261 – 265; b) W. A. Herrmann, J. Schꢂtz, G. D. Frey, E. Herdt-
Scheme 5. Rearrangement starting from pyrazolium salts.
In summary, we present a new rearrangement of pyrazol-
3-ylidenes produced in situ by decarboxylation of pseudo
cross-conjugated mesomeric betaines to 4-aminoquinolines;
the mechanism should generate interest from the viewpoint of
heterocyclic and pharmaceutical chemistry.
[13] S. K. Schneider, P. Roembke, G. R. Julius, C. Loschen, H. G.
Experimental Section
[15] V. Lavallo, C. A. Dyker, B. Donnadieu, G. Bertrand, Angew.
8a: Betaine 7a (108 mg, 0.5 mmol) was suspended in toluene (4 mL)
and heated to reflux for 30 minutes. The precipitate that formed was
separated by filtration and washed with toluene. Yield: 79%, m.p.
1
2348C. H NMR ([D6]DMSO, 400 MHz): d = 8.07 (d, 1H, 5-H, J =
8.3 Hz), 7.69 (d, 1H, 8-H, J = 8.3 Hz), 7.54 (dd, 1H, 7-H, J = 6.9 Hz,
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2010, 49, 2790 –2793