abstraction,6 and alkyl nitrites are classical intermediates for
photolytic processes, including the functionalization of
steroidal methyl groups.7 Metal-mediated halogenation of
hydroperoxides has been demonstrated with both a stoichio-
metric metal oxidant and a stoichiometric metal reductant,8
but to our knowledge, no metal-catalyzed versions of this
reaction have been reported.9
Table 1. Optimization of Remote C-H Functionalization of
Alkyl Hydroperoxides
In order to develop a simple catalytic system, we examined
alkyl hydroperoxides as substrates that can generate a reactive
intermediate in the presence of transition-metal catalysts that
can potentially perform an intramolecular functionalization
at a nonactivated δ carbon. The alkyl hydroperoxide sub-
strates can be synthesized from the corresponding alcohols.10
They can be purified by silica gel chromatography and are
stable for several months in a freezer (for synthetic details,
see the Supporting Information). In searching for a catalyst
for a redox atom-transfer process, we took inspiration from
atom-transfer radical polymerization. Among potential cata-
lysts, we found that copper(I) complexes with chelating
nitrogen ligands are capable catalysts for the formation of
chloride 2a from the hydroperoxide 1a, together with the
byproducts 3a and 4a. The combination of CuCl and
N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDTA) in
the presence of acetic acid and tetrabutylammonium chloride
provided 16% of the alkyl chloride product. Variation of the
solvent was not productive, though it was found that on
dilution of the reaction mixture from 0.3 to 0.06 M the yield
of chlorinated alcohol increased to 28% (Table 1, entry 4).
yielda (%)
chlorine
source
entry substrate
ligand
comments
0.3 M
0.3 M
0.3 M
2
3
4
1
2
3
4
5
6
7
8
1a
1a
1a
1a
1a
1a
1a
1a
1a
1a
1a
bipyridine Bu4NCl
Bu4NCl
0
0
PMDTA
PMDTA
TREN
Bu4NCl
Bu4NCl
Bu4NCl
16 26 18
28 11 24
28 22 10
Me6TREN Bu4NCl
CYCLAM Bu4NCl
16
12
13
24
28
41d
6
5
6
5
4
8
39
5
20
33
29
7
PMDTA
PMDTA
PMDTA
PMDTA
Bu4NClb
Bu4NClb
anhydrousb
1 vol % H2O
9
10
11
iPr2NH·HCl 1 vol % H2O
NH4Cl
24 h, addnc
1 vol % H2O
1 vol % H2O
12
13
14
15
1b
1b
1b
1b
PMDTA
PMDTA
PMDTA
PMDTA
Bu4NCl
58
61
50
65d
5
4
8
3
21
19
21
17
iPr2NH·HCl 1 vol % H2O
NH4Cl
1 vol % H2O
iPr2NH·HCl 2.5 × AcOH e
,
1 vol % H2O
16
1b
none
iPr2NH·HCl 2.5 × AcOH e
,
25 26 35
1 vol % H2O
a Yields determined by HPLC. b Anhydrous Bu4NCl was used in place
of the hydrate. c The hydroperoxide was added over 24 h. d Isolated yield.
e The amount of AcOH was increased from 4 equiv to 10 equiv.
(5) For a recent example, see: Zhu, H.; Wickenden, J. G.; Campbell,
N. E.; Leung, J. C. T.; Johnson, K. M.; Sammis, G. M. Org. Lett. 2009,
11, 2019–2022.
A brief survey of other sp3 nitrogen ligands did not improve
the reaction efficiency (Table 1, entries 5-7).
(6) (a) Brun, P.; Pally, M.; Waegell, B. Tetrahedron Lett. 1970, 331–
334. (b) Brun, P.; Waegell, B. Bull. Soc. Chim. Fr. 1972, 1825–1832. (c)
Variable and irreproducable yields led us to examine the
effect of water on reaction efficiency. Perhaps surprisingly,
rigorous exclusion of water was detrimental to reaction yield
(Table 1, entry 8). The controlled addition of water provided
reproducibility, and optimal results were achieved by adding
1 vol % water to the solvent. Also, only a trace amount of
product was detected when the reaction was carried out in
air. Other chlorination sources were screened, and the use
of NH4Cl together with syringe pump addition of the
hydroperoxide substrate over 24 h improved the yield to 41%
(Table 1, entry 11), but we have been unable to improve
this result with primary hydroperoxide substrates.
ˆ
ˇ
Mihailovic´, M. Lj.; Cekovic´, Z.; Andrejevic´, V.; Matic´, R.; Jeremic´, D.
Tetrahedron 1968, 24, 4947–4961. (d) Bowers, A.; Denot, E.; Ibanez, L. C.;
Cabezas, M. E.; Ringold, H. J. J. Org. Chem. 1962, 27, 1862–1867.
(7) (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M.
J. Am. Chem. Soc. 1961, 83, 4076–4083. (b) Barton, D. H. R.; Akhtar,
M. J. J. Am. Chem. Soc. 1962, 84, 1496–1497. (c) Barton, D. H. R.; Akhtar,
M. J. J. Am. Chem. Soc. 1964, 86, 1528–1536. (d) Barton, D. H. R. Pure
Appl. Chem. 1968, 16, 1. (e) Barton, D. H. R.; Budhiraja, R. P.; McGhie,
J. F. J. Chem Soc., Part C 1969, 336–338. (f) Batten, P. L.; Bentley, T. J.;
Boar, R. B.; Draper, R. W.; McGhie, J. F.; Barton, D. H. R. J. Chem. Soc.,
Perkin Trans. 1 1972, 739–748. (g) Stotter, P. L.; Hill, K. A.; Friedman,
M. D. Heterocycles 1987, 25, 259. (h) Suginome, H.; Nakayama, Y.;
Senboku, H. J. Chem. Soc., Perkin Trans. 1 1992, 1837–1842.
(8) (a) Acott, B.; Beckwith, A. L. J. Aust. J. Chem. 1964, 17, 1342–
ˆ
ˇ
ˇ
1353. (b) Cekovic´, Z.; Green, M. M. J. Am. Chem. Soc. 1974, 96, 3000–
ˆ
3002. (c) Cekovic´, Z.; Dimitrijevic´, Lj.; Djokic´, G.; Srnic´, T. Tetrahedron
ˆ
ˆ
ˇ
ˇ
ˆ
1979, 35, 2021–2026. (d) Cekovic´, Z.; Cvetkovic´, M. Tetrahedron Lett.
1982, 23, 3791–3794. (e) Cekovic´, Z.; Ilijev, D. Tetrahedron Lett. 1988,
29, 1441–1444. (f) Petrovic´, G.; Cekovic´, Z Tetrahedron 1999, 55, 1377–
1390.
Moving to a secondary hydroperoxide 1b, we found that
the formation of alcohol (2-octanol) and carbonyl (2-
octanone) byproducts was significantly decreased, and after
a brief optimization, we obtained the chloride 2b in 65%
yield (Table 1, entry 15). The optimal method thus varies
depending upon the type of chorination source used. For
primary alkyl hydroperoxide substrates, which were highly
reactive, NH4Cl was found to give better yield (Table 1, entry
11), whereas for secondary alkyl hydroperoxide substrates,
diisopropylamine hydrochloride gave the best yields (Table
1, entries 13 and 15). A control experiment with substrate
1b in the absence of ligand (entry 16) exhibited similar rates
of starting material conversion but inferior product formation,
ˆ
ˇ
(9) For recent reviews discussing catalytic remote C-H functionalization,
see: (a) Salvador, J. A. R.; Silvestre, S. M.; Moreira, V. M. Curr. Org.
Chem. 2006, 10, 2227–2257. (b) Dick, A. R.; Sanford, M. S. Tetrahedron
2006, 62, 2439–2463. For recent examples of catalytic remote C-H
functionalization; see: (c) Williams Fiori, K.; Fleming, J. J.; Du Bois, J.
Angew. Chem., Int. Ed. 2004, 43, 4349–4352. (d) Williams Fiori, K.; Du
Bois, J. J. Am. Chem. Soc. 2003, 125, 2028–2029. (e) Breslow, R.; Yan, J.;
Belvedere, S. Tetrahedron Lett. 2002, 43, 363–365. (f) Breslow, J.; Yang,
J.; Yan, J. Tetrahedron 2002, 58, 653–659.
(10) (a) Williams, H. R.; Mosher, H. S. J. Am. Chem. Soc. 1954, 76,
2984–2987. (b) Walling, C.; Buckler, S. A. J. Am. Chem. Soc. 1955, 77,
6032–6038. Jinsheng, L.; Pritzkow, W.; Voerckel, V. J. Prakt. Chem. 1994,
336, 43–52. (bb) Casteel, D. A.; Jung, K. J. Chem. Soc., Perkin Trans. 1
1991, 2597–2598. (c) Kropf, H.; von Wallis, H. Synthesis 1981, 8, 633–
635.
Org. Lett., Vol. 12, No. 11, 2010
2461