L. Yong et al.
Table I. No-carrier-added radioiodination of Dowex-sup-
ported organotrifluoroborates
Ar BF3K
+
+
OH-
NR3
Ar BF
3 NR3
+
-
Na123
I
polymer-supported
quaternary amine
123I
Ar BF3
Ar
THF-H2O (1:1)
reflux
NR3
-
+
Scheme 1. Synthesis of Dowex-supported organotrifluoroborate reagents.
Ar
Reaction
time (min)
Radiochemical
yield (%)
examined for radioiodinations using iodo beads. However, no
enhancements in radiochemical yields were observed.
Phenyl
2-Naphthelenyl
4-Ph-phenyl
20
20
25 (20)
20
20 (25)
20
20
20
25 (30)
29
34
67 (45)
46
95 (90)
37
0
33
65 (48)
No-carrier-added radioiodinations of a series of Dowex-
supported organotrifluoroborates were then examined using
chloramine-T as the oxidant. The radioiodinations proceeded
rapidly for organotrifluoroborates bearing electron-donating
groups (Table I). The presence of a nitro group completely
inhibited the reaction (an observation that had been made
earlier).8 After filtering the reaction mixture through a silica
Sep-Pak Plus cartridge (Waters), the radiochemical purity of the
products typically exceeded 98% (Figure 1).
4-tBu-phenyl
3,5-Dimethyphenyl
3,4,5-Trimethoxyphenyl
4-NO2-phenyl
(E)-2-(Phenyl)vinyl
(E)-2-(40-CF3-phenyl)vinyl
Typical procedure for no-carrier-added radioiodination
1800
1600
1400
1200
1000
800
The Dowex-supported organotrifluoroborate (10 mg), aqueous
THF (500 mL), and the oxidant were added to a 2 mL Wheaton vial
and the vial capped with a rubber-seal. No-carrier-added Na123
I
(37 MBq, 0.1% aqueous NaOH) in water (100mL) was then added
to the vial and the mixture stirred at 601C. The reaction progress
was monitored by radio-TLC. After completion, the product was
extracted into hexane-ethyl acetate (v/v, 20:1, 1 mL) and then the
organic layer was passed through a silica gel cartridge using
hexanes as eluant. The total synthesis time was about 40–50 min.
In conclusion, the no-carrier-added radioiodination of Dowex-
supported organotrifluoroborates was achieved. The radiolabeling
of the Dowex-supported organotrifluoroborates occurred success-
fully using a varitey of oxidants but chloramine-T generated the
highest yields of the desired product. Overall, the yields obtained
parallel those achieved in previous small molecule studies (non-
polymeric organotrifluoroborates) but tended to be slightly lower,
presumabley due to the heterogenious reaction conditions.
600
400
200
0
0
20
40
60
80
100
position (mm)
Acknowledgement
Figure 1. Radio-TLC of I-123 labeled trans-2-(4-trifluoromethylphenyl)vinyl iodide
after filtration through a Sep-Pak Plus silica cartridge.
Acknowledgment is made to the Donors of U.S. Department of
Energy and the Robert H. Cole Foundation for support of this
research. We also thank Frontier Scientific, Inc. for supplying a
number of organoboron reagents and Dr. Thomas Lee Collier for
his insightful comments.
Med. Biol. 2000, 27, 803; (g) D. H. Hunter, M. Janabi, PCT Int. Appl.
2002070020, 2002; (h) S. Mundwiler, L. Candreia, P. Hafliger,
K. Ortner, R. Alberto, Bioconjugate Chem. 2004, 15, 195;
(i) A. G. Hernan, P. N. Horton, M. B. Hursthouse, J. D. Kilburn, J.
Organometallic Chem. 2006, 691, 1466; (j) R. W. Riddoch,
P. Schaffer, J. F. Valliant, Bioconjugate Chem. 2006, 17, 226; (k)
M. Gacek, H. Priebe, N. J. Osborn, PCT Int. Appl., 2007066089, 2007.
[3] (a) A. Donovan, J. Forbes, P. Dorff, P. Schaffer, J. Babich,
J. F. Valliant, J. Am. Chem. Soc. 2006, 128, 3536; (b) J. W. McIntee,
C. Sundararajan, A. C. Donovan, M. S. Kovacs, A. Capretta,
J. F. Valliant, J. Org. Chem. 2008, 73, 8236.
[4] (a) G. W. Kabalka, J. Label. Compd. Radiopharm. 2007, 50, 888;
(b) G. W. Kabalka, Acc. Chem. Res. 1984, 17, 215.
[5] (a) G. W. Kabalka, M.-L. Yao, J. Organometallic Chem. 2009, 694,
1638; (b) H. M. Schuller, G. W. Kabalka, U.S. Patent Appl Pub. US
2006067879, 2006.
References
[1] (a) G. W. Kabalka, M. M. Goodman, J. F. Green, R. Marks, D. Longord,
J. Label. Compd. Radiopharm. 1993, 32, 165; (b) G. W. Kabalka,
J. F. Green, M. M. Goodman, J. T. Maddox, S. J. Lambert,
Radioparmaceutical synthesis via boronated polymers, in Current
Topics in the Chemistry of Boron (Eds.: G. W. Kabalka), The Royal
Society of Chemistry, Cambridge, UK, 1994, pp. 199–203.
[2] (a) P. A. Culbert, D. H. Hunter, React. Polym. 1993, 19, 247;
b) K. Kowai, H. Ohta, M. A. Channing, A. Kubodera, W. C. Eckelman,
Appl. Radiat. Isotopes, 1996, 47, 37; (c) L. P. Szajek, M. A. Channing,
W. C. Eckelman, Appl. Radiat. Isotopes, 1998, 49, 795;
(d) D. H. Hunter, X. Zhu, J. Label. Compd. Radiopharm. 1999, 42,
653; (e) A. Pollak, D. G. Roe, C. M. Pollock, L. F. L. Lu,
J. R. Thornback, J. Am. Chem. Soc. 1999, 121, 11593; (f) R. Dunn-
Dufault, A. Pollak, J. Fitzgerald, J. R. Thornback, J. R. Ballinger, Nucl.
[6] (a) G. W. Kabalka, Z. Wang, J. F. Green, M. M. Goodman, Appl. Rad.
Isotopes, 1992, 43, 389; (b) G. W. Kabalka, V. Namboodiri,
M. Akula, Radiolabel. Compds. Radiopharm. 2001, 42, P5793.
[7] L. Yong, M.-L. Yao, J. F. Green, H. Kelly, G. W. Kabalka, Chem.
Commun. 2010, 46, 2623.
[8] (a) G. W. Kabalka, A. R. Mereddy, Tetrahedron Lett. 2004, 45, 343;
(b) G. W. Kabalka, A. R. Mereddy, Nucl. Med. Biol. 2004, 31, 935.
Copyright r 2010 John Wiley & Sons, Ltd.
J. Label Compd. Radiopharm 2011, 54 173–174