2400 Organometallics 2010, 29, 2400–2402
DOI: 10.1021/om100290h
(Selenocarbamoyl)silanes and -germanes: Their Synthesis Using
(Selenocarbamoyl)lithium and Characterization
Toshiaki Murai,* Rumi Hori, Toshifumi Maruyama, and Fumitoshi Shibahara
Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
Received April 10, 2010
Scheme 1
Summary: Deprotonation of the selenoformyl group in N,N-
dibenzyl selenoformamide with LDA, followed by silylation
and germylation of the resulting anion with Me3SiCl and
Me3GeCl, gives (selenocarbamoyl)silane and -germane in
moderate to good yields. The molecular structures of these
products and the starting selenoformamide were characterized
by using X-ray analyses.
Studies of selenocarbonyl compounds have provided fruit-
ful results for over 40 years.1 Owing to their lability, seleno-
aldehydes and -ketones2 have been generated in situ
and trapped by their reactions with dienes. In order to
stabilize these substances, bulky substituents are typically
incorporated at the selenocarbonyl group.3 Although being
dependent on their exact nature, heteroatom-containing
functional groups, such as amino, alkoxy, sulfenyl, and
selenenyl groups, introduced at the selenocarbonyl carbon
also bring about stabilization of these compounds.4 As a
result, selenoamides,5 selenoic acid O-esters,6 and their
sulfur and selenium counterparts6,7 have been widely stu-
died. In contrast, investigations probing the effects of silyl
and germyl groups on the properties of selenocarbonyl
compounds have not been conducted,8 owing in part to the
lack of methods for the introduction of these functional
groups. One of the most promising ways to introduce these
groups is via the generation of selenocarbonyl anions
and their reaction with silyl and germyl halides. However,
only a limited number of examples of compounds bearing
a selenoformyl group are known. As part of a long-range
program to study selenocarbonyl compounds,9 we recently
developed a convenient method for the synthesis of seleno-
formamides by the reaction of formamides, elemental sele-
nium, trichlorosilane, and amines.10 Below, we describe
the results of an effort that takes advantage of this metho-
dology in routes for the synthesis of the first examples
of (selenocarbamoyl)silanes and -germanes via (selenocarba-
moyl)lithium. In addition, we have structurally characteri-
zed the (selenocarbamoyl)silanes and -germanes by using
X-ray crystallographic and theoretical methods.
*To whom correspondence should be addressed. Tel: 81-58-293-2614.
Fax: 81-58-293-2614. E-mail: mtoshi@gifu-u.ac.jp.
(1) For reviews: (a) Murai, T.; Kato, S. In Topics in Current Chem-
istry; Wirth, T., Ed.; Springer-Verlag: Berlin, 2000; Vol. 208, p 177.
(b) Grobe, J.; Le Van, D. J. Fluorine Chem. 2004, 125, 801.
(2) For reviews and recent examples of the generation and reaction of
selenoaldehydes and -ketones: (a) Guziec, F. S., Jr.; Guziec, L. J. In
Organoselenium Chemistry: A Practical Approach; Back, T. G., Ed.;
Oxford University Press: Oxford, U.K., 1999; p 193. (b) Guziec, L. J.;
Guziec, F. S., Jr. In Comprehensive Organic Functional Group Transfor-
mations, Katritzky, A. R., Taylor, R. J. K., Eds.; Elsevier: Oxford, U.K.,
2005; Vol. 3, p 397. (c) Okuma, K; Izaki, T.; Kubo, K.; Shioji, K.;
Yokomori, Y. Bull. Chem. Soc. Jpn. 2005, 78, 1121. (d) Shioji, K.;
Matsumoto, A.; Takao, M.; Kurauchi, Y.; Shigetomi, T.; Yokomori, Y.;
Okuma, K. Bull. Chem. Soc. Jpn. 2007, 80, 743. (e) Okuma, K.; Mori, Y.;
Shigetomi, T.; Tabuchi, M.; Shioji, K.; Yokomori, Y. Tetrahedron Lett.
2007, 48, 8311. (f) Okuma, K.; Koda, M.; Shigetomi, T. Phosphorus, Sulfur
Silicon Relat. Elem. 2008, 183, 1057.
In exploratory studies we observed that treatment of N,N-
dibenzyl selenoformamide (1) with LDA at -78 °C for 2 h
generates (selenocarbamoyl)lithium 2 (Scheme 1). Addition
of chlorotrimethylsilane to the reaction mixture followed by
stirring at -78 °C for 24 h and chromatographic purification
(3) Tokitoh, N.; Okazaki, R. Pol. J. Chem. 1998, 72, 971.
(4) (a) Wu, R.; Barr, M. E.; Hernandez, G. O.; Charles, C. C.; Silks,
L. A. Recent Res. Dev. Org. Bioorg. Chem. 1998, 2, 29. (b) Wu, R.;
Hernandez, G.; Dunlap, R. B.; Odom, J. D.; Martinez, R. A.; Silks, L. A.
Trends Org. Chem. 1998, 7, 105. (c) Bricklebank, N. Recent Res. Dev.
Inorg. Organomet. Chem. 2001, 1, 25. (d) Guziec, L. J.; Guziec, F. S., Jr. In
Comprehensive Organic Functional Group Transformations; Katritzky,
A. R., Taylor, R. J. K., Eds.; Elsevier: Oxford, U.K., 2005; Vol. 6, p 573.
(5) For reviews: (a) Moore, A. J. In Comprehensive Organic Func-
tional Group Transformations; Katritzky, A. R., Taylor, R. J. K., Eds.;
Elsevier: Oxford, U.K., 2005; Vol. 5, p 519. (b) Flynn, C.; Haughton, L. In
Comprehensive Organic Functional Group Transformations; Katritzky,
A. R., Taylor, R. J. K., Eds.; Elsevier: Oxford, U.K., 2005; Vol. 5, p 571.
(c) Murai, T. In Topics in Current Chemistry; Kato, S., Ed.; Springer-
Verlag: Heidelberg, Germany, 2005; Vol. 251, p 247. (d) Koketsu, M.;
Ishihara, H. Curr. Org. Synth. 2007, 4, 15. (e) Koketsu, M.; Ishihara, H. In
Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Sele-
nium, Tellurium; Devillanova, F. A., Ed.; Royal Society of Chemistry:
Cambridge, U.K., 2007; p 145. (e) Hua, G.; Woollins, J. D. Angew. Chem.,
Int. Ed. 2009, 48, 1368.
(7) For reviews: (a)Murai, T. Synlett 2005, 1509. (b) Ishii, A.; Nakayama,
J. In Topics in Current Chemistry; Kato, S., Ed.; Springer-Verlag: Heidelberg,
Germany, 2005; Vol. 251, p 227.
(8) In situ generation of selenoacylsilane and its trapping by a diene
has been reported: Segi, M.; Koyama, T.; Nakajima, T.; Suga, S.; Murai,
S.; Sonoda, N. Tetrahedron Lett. 1989, 30, 2095.
(9) For recent examples, see: (a) Murai, T.; Aso, H.; Kato, S. Org.
Lett. 2002, 4, 1407. (b) Tani, Y.; Murai, T.; Kato, S. J. Am. Chem. Soc. 2002,
124, 5960. (c) Murai, T.; Ishizuka, M.; Suzuki, A.; Kato, S. Tetrahedron
Lett. 2003, 44, 1343. (d) Mutoh, Y.; Murai, T. Org. Lett. 2003, 5, 1361.
(e) Murai, T.; Fujishima, A.; Iwamoto, C.; Kato, S. J. Org. Chem. 2003, 68,
7979. (f) Mutoh, Y.; Murai, T. Organometallics 2004, 23, 3907. (g) Mutoh,
Y.; Murai, T.; Yamago, S. J. Organomet. Chem. 2007, 692, 129. (h) Murai,
T.; Nogawa, S.; Mutoh, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2220.
(10) Shibahara, F.; Sugiura, R.; Murai, T. Org. Lett. 2009, 11, 3064.
(6) For a review: Wirth, T. Sci. Synth. 2005, 22, 181.
r
pubs.acs.org/Organometallics
Published on Web 05/04/2010
2010 American Chemical Society