608
Y. ZHANG ET AL.
4. McEwan, K., Lewis, K., Yang, G.Y., Chng, L.L., Lee, Y.W., Lau, W.P.,
and Lai, K.S. Synthesis, characterization, and nonlinear optical study of
metalloporphyrins. Adv. Funct. Mater., 2003, 13, 863–867.
5. Stepien´, M., Donnio, B., and Sessler, J.L. Discotic liquid crys-
talline materials based on porphycenes: a mesogenic metalliporphycene-
tetracyanoquinodimethane (TCNQ) adduct. Chem. Eur. J., 2007, 13, 6853–
6863.
6. Zhang, X.B., Guo, C.C., Xu, J.B., Shen, G.L., and Yu, R.Q. A novel
ethacrynic acid sensor based on a lanthanide porphyrin complex in a PVC
matrix. Analyst. 2000, 125, 867–870.
7. Hasegawa, Y., Ohkubo, T., Sogabe, K., Kawamura, Y., Wada, Y.,
Nakashima, H., and Yanagida, S. Luminescence of novel neodymium sul-
fonylaminate complexes in organic media. Angew. Chem. Int. Ed., 2000,
39, 357–361.
8. Balakumar, A., Lysenko, A.B., Carcel, C., Malinovskii, V.L., Gryko, D.T.,
Schweikart, K.H., Loewe, R.S., Yasseri, A.A., Liu, D.F., and Lindsey, J.S.
Diverse redox-active molecules bearing O-, S-, or Se-terminated tethers for
attachment to silicon in studies of molecular information storage. J. Org.
Chem., 2004, 69, 1435–1443.
9. Tsukube, H., and Shinoda, S. Lanthanide complexes as smart CD probes
for chirality sensing of biological substrates. Enantiomer, 2000, 5, 13–22.
10. Horrocks, Jr. W.D., and Wong, C.P. Lanthanide porphyrin complexes. Eval-
uation of nuclear magnetic resonance dipolar probe and shift reagent capa-
bilities. J. Am. Chem. Soc., 1976, 98, 7157–7162.
11. Yu, M., Yu, L.X., Jian, W.P., Yang, W.S., and Liu, G.F. Synthesis and
properties of lanthanide hydroxyl-meso-tetra-(p-chlorophenyl) porphyrin
complexes. Chem. Res. Chinese U., 2004, 20(6), 807–809.
12. Yu, M., Liu, G.F., and Cui, X.L. Synthesis, spectroscopy, surface photovolt-
age, and electrochemical properties of porphyrin compound liquid crystals.
J Porphyrin Phthalocyanines, 2005, 9(4), 231–239.
13. Yu, M., Liu, G.F., Cheng, Y.C., Xu, W.Q. Synthesis and properties of 5, 10,
15, 20-tetra-f(p-alkoxy-m-ethyloxy)phenylgporphyrin hydroxy lanthanide
liquid crystal complexes. Liquid Crystals, 2005, 32, 771–780.
14. Yu, M., Liu, G.F., Zhao, Q.D., Wang, D.J., and Jiang, X. Synthesis and char-
acterization of meso-tetra-(p-methoxyphenyl) porphyrin rare earth chloride.
Chin. J. Chem., 2005, 23, 1021–1026.
15. Yu, M., Zhang, W.Y., Fan, Y., Jian, W.P., and Liu, G.F. [5-(p-alkoxy)phenyl-
10, 15, 20-tri -phenyl] porphyrin and their rare earth complex liquid crys-
talline. J. Phys. Org. Chem., 2007, 20(4), 229–235.
16. Yu, M., Chen, G.J., and Liu, G.F. Photophysical and electrochemical prop-
erties of monoporphyrin rare earth liquid crystalline materials. Journal of
Physics and Chemistry of Solids, 2007, 68, 541–548,
17. An, Q.D., Shi, T.S., Liu, W., Shen, H.C., and Yang, D.Z. Synthesis and char-
acterization of liquid crystal of meso-tetra-(4-acyloxybenzyl) porphyrin free
base. Gong Neng Cai Liao, 2002, 33, 666–668.
18. Liu, G.F., and Shi, T.S. Lanthanide complexes with acetylacetonate
and 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin ligands. Polyhe-
dron, 1994, 13(15–16), 2255–2258.
19. Wong, C.P. De W. Horrocks, Jr., W. New metalloporphyrin, thorium and
yttrium complexes of tetraphenyporphin. Tetrahedron Lett., 1975, 26, 2637–
2640.
FIG. 1. Emission spectra of the ligand and complexes.
where Fu (FZnTPP) and FS(F sample) are the measured flu-
orescence integral area of the the reference ZnTPP and sam-
ple, respectively, Au (AZnTPP) and As (A sample) are the ab-
sorbances of the the reference (ZnTPP) and sample, respec-
tively, and YZnTPP (YZnTPP = 0.033)[21] is the quantum yield of
the reference at the same excitation wavelength.
CONCLUSION
In the work, we synthesized a new meso-substituted un-
symmetrical porphyrin, 5-(4-myristyloxy) phenyl-10, 15, 20-
triphenyl porphyrin, and a series of its hydroxy lanthanide com-
plexes, (Lanthanide ions: Gd, Tb, Dy, and Ho). We thoroughly
investigated their electronic absorption spectra, and lumines-
cent property. A lanthanide porphyrin complex, one molecu-
lar porphyrin ligand is coordinated to a lanthanide ion in a
tetradentate fashion and a hydroxyl group is coordinated to
the same lanthanide ion. Therefore, the coordination number
of the central rare earth ion is five.[22,23] The rare earth ion
is expected to lie above the porphyrin molecular plane (see
Scheme 1).
REFERENCES
20. Geary, W.J. The use of conductivity measurements in organic solvents for
the characterisation of coordination compounds. Coord. Chem. Rew., 1971,
7, 81–122.
21. Quimby, D.J., and Longo, F.R. Luminescence studies on several tetraaryl-
porphins and their zinc derivatives. J. Am. Chem. Soc., 1975, 97(18), 5111–
5117.
22. Horrocks, W. Dew. Jr., and Hove, E.G. Water-soluble lanthanide porphyrins:
Shift reagents for aqueous solution. J. Am. Chem. Soc., 1978, 100(14),
4386–4392.
23. Gouterman, M., Schumaker, C.D., Srivastava, T.S., and Yonetani, T. Ab-
sorption and luminescence of yttrium and lanthanide octaethylporphin com-
plexes. Chem. Phys. Let., 1976, 40(3), 456–461.
1. Song, S.N., Li, D.M., Wu, J.F., Zhuang, C.F., Ding, H., Song, W.B., Cui,
L.F., Cao, G.Z., and Liu, G.F. Syntheses and characterization of molyb-
denum/zinc porphyrin dimers bridged by aromatic linkers. Eur. J. Inorg.
Chem., 2007, 1844–1853.
2. Cui, X.L., Yu, M., and Liu, G.F. Unsymmetrical porphyrin and its two
groups of lanthanide complexes: synthesis, spectroscopy, and thermal anal-
ysis. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal
Chemistry, 2005, 35(10), 785–793.
3. Lazzeri, D., Rovera, M., Pascual, L., and Durantini, E.N. Photodynamic
studies and photoinactivation of Escherichia coli using meso-substituted
cationic porphyrin derivatives with asymmetric charge distribution. Pho-
tochem. Photobiol., 2004, 80, 286–293.