group at the R-position. When the R-substituent is a polar
group,3 such as an alkoxy group or halogen atom, allylbo-
ration proceeds predominately via TS-3 to give (Z)-homoal-
lylic alcohol 4. Although the exact origin of the high (Z)-
selectivity remains unclear, several factors, including steric
effects, dipolar effects, and stereoelectronic minimization of
π-σ* delocalization in the transition states, have been
proposed3l and supported by computational studies.4s How-
workers, allylboration in the presence of a catalytic amount
of a chiral, nonracemic Lewis or Brønsted acid provides
homoallylic alcohols in high yields and excellent enantiose-
lectivities.8 However, Lewis or Brønsted acid promoted
allylboration with enantioenriched, R-substituted allylbor-
onates largely remains underdeveloped.9 Recently, Hall
reported the enantioselective synthesis and Lewis acid
promoted allylborations of R-TMSCH2-substituted allylbo-
ronates that generate (E)-δ-TMSCH2-substituted homoallylic
alcohols with excellent selectivities.9c
In connection with an ongoing problem in natural product
synthesis, we had occasion to explore Lewis acid promoted
allylborations of enantioenriched R-substituted allylboronates. We
found and report herein that (E)-δ-methyl-homoallylic alcohols 2
are obtained in good yields and excellent enantioselectivities from
BF3·Et2O-promoted allylboration reactions of 1.10 In addition, we
have found that δ-chloro-substituted homoallylic alcohols 14 can
also be obtained in good yield and 3-6:1 (E)-selectivity from
BF3·Et2O-promoted allylboration reactions of 13. The origin of (E)-
selectivity in these reactions is proposed.
ever, when the R-substitution is a nonpolar alkyl group,4,5
a
mixture of (Z)- and (E)-homoallylic alcohols 4 and 5 is often
obtained. Until recently,5l-n,9 synthetically useful selectivity
has proven challenging to achieve with enantioenriched
R-alkyl-substituted allyl- or (E)-crotylboronates.
Lewis or Brønsted acid promoted allylboration with allyl-
boronate reagents is an important emerging topic in carbonyl
allylation chemistry.6,7 As demonstrated by Hall and co-
(3) For carbonyl addition with R-hetero atom substituted allylboronates:
(a) Hoffmann, R. W.; Landmann, B. Tetrahedron Lett. 1983, 24, 3209. (b)
Hoffmann, R. W.; Landmann, B. Angew. Chem., Int. Ed. 1984, 23, 437
(c) Hoffmann, R. W.; Dresely, S. Angew. Chem., Int. Ed. 1986, 25, 189.
(d) Hoffmann, R. W.; Landmann, B. Chem. Ber. 1986, 119, 1039. (e)
Hoffmann, R. W.; Landmann, B. Chem. Ber. 1986, 119, 2013. (f) Hoffmann,
R. W.; Dresely, S. Tetrahedron Lett. 1987, 28, 5303. (g) Hoffmann, R. W.;
Dresely, S.; Lanz, J. W. Chem. Ber. 1988, 121, 1501. (h) Hoffmann, R. W.;
Dresely, S.; Hildebrandt, B. Chem. Ber. 1988, 121, 2225. (i) Hoffmann,
R. W.; Dresely, S. Synthesis 1988, 103. (j) Hoffmann, R. W.; Dresely, S.
Chem. Ber. 1989, 122, 903. (k) Stu¨rmer, R.; Hoffmann, R. W. Synlett 1990,
759. (l) Hoffmann, R. W.; Wolff, J. J. Chem. Ber. 1991, 124, 563. (m)
Beckmann, E.; Hoppe, D. Synthesis 2005, 217. For synthetic applications:
(n) Andersen, M. W.; Hildebrandt, B.; Dahmann, G.; Hoffmann, R. W.
Chem. Ber. 1991, 124, 2127. (o) Andersoen, M. W.; Hildebrandt, B.;
Hoffmann, R. W. Angew. Chem., Int. Ed. 1991, 30, 97. (p) Hoffmann, R. W.;
Schlapbach, A. Tetrahedron 1992, 48, 1959. (q) Hoffmann, R. W.; Rohde,
T.; Haeberlin, E.; Schafer, F. Org. Lett. 1999, 1, 1713. (r) Hoffmann, R. W.;
Haeberlin, E.; Rohde, T. Synthesis 2002, 207.
R-Methyl-substituted allylboronate 8 was prepared from
methyl boronate 6,11 by using the Matteson homologation
(Scheme 1).12 Allylboration reactions of hydrocinnamaldehyde
with 8 are summarized in Table 1. The noncatalyzed reaction
provided a 1:1.4 mixture of ent-2a and 9 (entry 1). Similar
results were obtained when the reaction was performed in the
presence of 10% Sc(OTf)3 (entry 2). When the reaction was
(6) (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124,
11586. (b) Ishiyama, T.; Ahiko, T.; Miyaura, N. J. Am. Chem. Soc. 2002,
124, 12414. For computational studies: (c) Sakata, K.; Fujimoto, H. J. Am.
Chem. Soc. 2008, 130, 12519.
(4) For carbonyl addition with R-alkyl-substituted allylboronates: (a)
Hoffmann, R. W.; Weidmann, U. J. Organomet. Chem. 1980, 195, 137. (b)
Andersen, M.; Hildebrandt, B.; Koester, G.; Hoffmann, R. W. Chem. Ber.
1989, 122, 1777. (c) Hoffmann, R. W.; Ditrich, K.; Koester, G.; Stu¨rmer,
R. Chem. Ber. 1989, 122, 1783. (d) Hoffmann, R. W.; Sander, T. Chem.
Ber. 1990, 123, 145. (e) Hoffmann, R. W.; Schlapbach, A. Liebigs Ann.
1991, 1203. For synthetic applications: (f) Ditrich, K.; Bube, T.; Stu¨rmer,
R.; Hoffmann, R. W. Angew. Chem., Int. Ed. 1986, 25, 1028. (g) Hoffmann,
R. W.; Ladner, W.; Ditrich, K. Liebigs Ann. 1989, 883. (h) Stu¨rmer, R.;
Ritter, K.; Hoffmann, R. W. Angew. Chem., Int. Ed. 1993, 32, 101. (i)
Hoffmann, R. W.; Rolle, U. Tetrahedron Lett. 1994, 35, 4751. (j) Hoffmann,
R. W.; Stu¨rmer, R. Chem. Ber. 1994, 127, 2511. (k) Stu¨rmer, R.; Hoffmann,
R. W. Chem. Ber. 1994, 127, 2519. (l) Hoffmann, R. W.; Rolle, U.;
Goettlich, R. Liebigs Ann. 1996, 1717. (m) Breitfelder, S.; Schlapbach, A.;
Hoffmann, R. W. Synthesis 1998, 468. (n) Rychnovsky, S. D.; Thomas,
C. R. Org. Lett. 2000, 2, 1217. (o) Rolle, T.; Hoffmann, R. W. HelV. Chim.
Acta 2004, 87, 1214. (p) Bahnck, K. B.; Rychnovsky, S. D. Chem. Commun.
2006, 22, 2388. (q) Bahnck, K. B.; Rychnovsky, S. D. J. Am. Chem. Soc.
2008, 130, 13177. (r) Smith, T. E.; Kuo, W.-H.; Balskus, E. P.; Bock, V. D.;
Roizen, J. L.; Theberge, A. B.; Carroll, K. A.; Kurihara, T.; Wessler, J. D.
J. Org. Chem. 2008, 73, 142. For computational studies: (s) Gennari, C.;
Fioravanzo, E.; Bernardi, A.; Vulpetti, A. Tetrahedron 1994, 50, 8815.
(5) For recent development of R-substituted allylboronates: (a) Pietruszka,
J.; Schone, N. Angew. Chem., Int. Ed. 2003, 42, 5638. (b) Pietruszka, J.;
Schone, N. Eur. J. Org. Chem. 2004, 5011. (c) Pietruszka, J.; Schone, N.;
Frey, W.; Grundl, L. Chem.sEur. J. 2008, 14, 5178. (d) Fernandez, E.;
Pietruszka, J. Synlett 2009, 1474. (e) Pelz, N. F.; Woodward, A. R.; Burks,
H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. (f)
Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2006, 128, 74. (g) Pelz, N,
F.; Morken, J. P. Org. Lett. 2006, 8, 4557. (h) Burks, H. E.; Liu, S.; Morken,
J. P. J. Am. Chem. Soc. 2007, 129, 8766. (i) Burks, H. E.; Kliman, L. T.;
Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134. (j) Ito, H.; Kawakami,
C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. (k) Ito, H.; Ito, S.;
Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129,
14856. (l) Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46,
359. (m) Althaus, M.; Mahmood, A.; Suarez, J. R.; Thomas, S. P.; Aggarwal,
V. K. J. Am. Chem. Soc. 2010, 132, 4025. (n) Binanzer, M.; Fang, G. Y.;
Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49, DOI: 10.1002/
anie.201001223.
(7) (a) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2004, 126, 8910. (b) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am.
Chem. Soc. 2006, 187, 12660. (c) Paton, R. S.; Goodman, J. M.; Pellegrinet,
S. C. Org. Lett. 2009, 11, 37.
(8) (a) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc.
2003, 125, 10160. (b) Kennedy, J. W. J.; Hall, D. G. J. Org. Chem. 2004,
69, 4412. (c) Rauniyar, V.; Hall, D. G. J. Am. Chem. Soc. 2004, 126, 4518.
(d) Gravel, M.; Lachance, H.; Lu, X.; Hall, D. G. Synthesis 2004, 1290. (e)
Rauniyar, V.; Hall, D. G. Angew. Chem., Int. Ed. 2006, 45, 2426. (f)
Rauniyar, V.; Hall, D. G. Synthesis 2007, 3421. (g) Rauniyar, V.; Zhai, H.;
Hall, D. G. J. Am. Chem. Soc. 2008, 130, 8481. (h) Rauniyar, V.; Hall,
D. G. J. Org. Chem. 2009, 74, 4236.
(9) (a) Carosi, L.; Lachance, H.; Hall, D. G. Tetrahedron Lett. 2005,
46, 8981. (b) Carosi, L.; Hall, D. G. Angew. Chem., Int. Ed. 2007, 46,
5913. (c) Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070. (d)
Peng, F.; Hall, D. G. Tetrahedron Lett. 2007, 48, 3305. (e) Carosi, L.; Hall,
D. G. Can. J. Chem. 2009, 87, 650.
(10) For alternative approaches to δ-methyl-homoallylic alcohols: (a)
Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J. Am. Chem. Soc.
1998, 120, 6609. (b) Sumida, S.; Ohga, M.; Mitani, J.; Nokami, J. J. Am.
Chem. Soc. 2000, 122, 1310. (c) Nokami, J.; Anthony, L.; Sumida, S.
Chem.sEur. J. 2000, 6, 2909. (d) Nokami, J.; Ohga, M.; Nakamoto, H.;
Matsubara, T.; Hussain, I.; Kataoka, H. J. Am. Chem. Soc. 2001, 123, 9168.
(e) Nokami, J.; Nomiyama, K.; Matsuda, S.; Imai, N.; Kataoka, H. Angew.
Chem., Int. Ed. 2003, 42, 1273. (f) Nokami, J.; Nomiyama, K.; Shafi, S. M.;
Kataoka, K. Org. Lett. 2004, 6, 1261. (g) Shafi, S. M.; Chou, S.; Kataoka,
K.; Nokami, J. Org. Lett. 2005, 7, 2957. (h) Kataoka, K.; Ode, Y.;
Matsumoto, M.; Nokami, J. Tetrahedron 2006, 62, 2471. (i) Nokami, J.;
Maruoka, K.; Souda, T.; Tanaka, N. Tetrahedron 2007, 63, 9016. (j) Loh,
T. P.; Tan, K. T.; Hu, Q. Y. Angew. Chem., Int. Ed. 2001, 40, 2921. (k)
Loh, T. P.; Tan, K. T.; Yang, J. Y.; Xiang, C. L. Tetrahedron Lett. 2001,
42, 8701. (l) Loh, T. P.; Hu, Q. Y.; Chok, Y. K.; Tan, K. T. Tetrahedron
Lett. 2001, 42, 9277. (m) Loh, T. P.; Lee, C. L. K.; Tan, K. T. Org. Lett.
2002, 17, 2985. (n) Tan, K. T.; Chng, S. S.; Cheng, H. S.; Loh, T. P. J. Am.
Chem. Soc. 2003, 125, 2958. (o) Lee, C. L. K.; Lee, C. H. A.; Tan, K. T.;
Loh, T. P.; Cheng, H. S. Org. Lett. 2004, 6, 1281. (p) Lee, C. H. A.; Loh,
T. P. Tetrahedron Lett. 2006, 47, 809. (q) Ramachandran, P. V.; Pratihar,
D.; Biswas, D. Chem. Commun. 2005, 41, 1988. (r) Malkov, A. V.;
Kabeshov, M. A.; Barlog, M.; Kocovsky, P. Chem.sEur. J. 2009, 15, 1570.
Org. Lett., Vol. 12, No. 12, 2010
2707