ORGANIC
LETTERS
2010
Vol. 12, No. 13
2958-2961
Oligoamide Duplexes as Organogelators
Ruikai Cao,† Jingjing Zhou,† Wei Wang,† Wen Feng,† Xianghui Li,†
Penghui Zhang,† Pengchi Deng,† Lihua Yuan,*,† and Bing Gong*,‡
College of Chemistry, Key Laboratory for Radiation Physics and Technology of
Ministry of Education, Institute of Nuclear Science and Technology, Analytical & Testing
Center of Sichuan UniVersity, Sichuan UniVersity, Chengdu 610064, Sichuan, China, and
Department of Chemistry, The State UniVersity of New York,
Buffalo, New York 14260
lhyuan@scu.edu.cn; bgong@buffalo.edu
Received April 27, 2010
ABSTRACT
Oligoamide duplexes carrying multiple alkyl side chains were found to serve as gelators for aromatic solvents. The double-stranded backbone
was essential for the hierarchical self-assembly of the molecular duplex into fibers of high aspect ratios. The demonstrated gelating abilities
may be extended to a large family of analogous H-bonded duplexes having different H-bonding sequences, leading to a unique platform for
developing a diverse variety of potential gelators based on a supramolecular and/or a dynamic covalent approach.
Gelation, as a phenomenon frequently observed in nature,
has attracted wide attention due to its fundamental signifi-
cance and potential applications.1,2 Gelators associate into
three-dimensional networks that immobilize the flow of liquid
by trapping solvent molecules. Interest in organic gelators
derives not only from the motivation of developing materials
with applications in fields such as membrane and separation
technology, catalysis, nanotechanology, light-harvesting ma-
terials, dye-sensitized solar cells, etc. but also from the desire
to understand how noncovalent interactions function coop-
eratively to bring about such unique properties. Many
synthetic molecules that assemble into supramolecular
networks via hydrogen bonding, π-π stacking, and solvo-
(3) (a) Wang, R.; Geiger, C.; Chen, L.; Swanson, B.; Whitten, D. G.
J. Am. Chem. Soc. 2000, 122, 2399. (b) Menger, F. M.; Caran, K. L. J. Am.
Chem. Soc. 2000, 122, 11679. (c) Wang, G.; Hamilton, A. D. Chem.sEur.
J. 2002, 8, 1954. (d) van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W.
J. Am. Chem. Soc. 2002, 124, 14759. (e) George, M.; Weiss, R. G. Langmuir
2003, 19, 1017. (f) Wu¨rthner, F.; Yao, S.; Beginn, U. Angew. Chem., Int.
Ed. 2003, 42, 3247. (g) de Jong, J. J. D.; Lucas, L. N.; Kellog, R. M.; van
Esch, J. H.; Feringa, B. L. Science 2004, 304, 278. (h) Zhan, C.; Gao, P.;
Liu, M. Chem. Commun. 2005, 462. (i) Li, H. F.; Homan, E. A.; Lampkins,
A. J.; Ghiviriga, I.; Castellano, R. K. Org. Lett. 2005, 7, 443. (j) Kishimura,
A.; Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179. (k) Yoshida,
M.; Fresco, Z. M.; Ohnishi, S.; Frechet, J. M. J. Macromolecules 2005, 38,
334. (l) Park, T.; Zimmerman, S. C. J. Am. Chem. Soc. 2006, 128, 11582.
(m) Zubarev, E. R.; Sone, E. D.; Stupp, S. I. Chem.sEur. J. 2006, 12,
7313. (n) Pal, A.; Ghosh, Y. K.; Bhattacharya, S. Tetrahedron 2007, 63,
7334. (o) Yang, Y.; Yan, H.-J.; Chen, C.-F.; Wan, L.-J. Org. Lett. 2007, 9,
4991. (p) Fujita, N.; Sakamoto, Y.; Shirakawa, M.; Ojima, M.; Fujii, A.;
Ozaki, M.; Shinkai, S. J. Am. Chem. Soc. 2007, 129, 4134. (q) Li, H.; Estroff,
L. A. J. Am. Chem. Soc. 2007, 129, 5480. (r) Baddeley, C.; Yan, Z.; King,
G.; Woodward, P. M.; Badjic´, J. D. J. Org. Chem. 2007, 72, 7270. (s) Percec,
V.; Peterca, M.; Yurchenko, M. E.; Rudick, J. G.; Heiney, P. A. Chem.sEur.
J. 2008, 14, 909. (t) Moffat, J. R.; David K. Smith, D. K. Chem. Commun.
2009, 316. (u) Du, P.; Wang, G.-T.; Zhao, X.; Li, G.-Y.; Jiang, X.-K.; Li,
Z.-T. Tetrahedron Lett. 2010, 51, 188.
† Sichuan University.
‡ The State University of New York.
(1) (a) Terech, P.; Weiss, R. G. Chem. ReV. 1997, 97, 3133. (b) Estroff,
L. A.; Hamilton, A. D. Chem. ReV. 2004, 104, 1201. (c) Ajayaghosh, A.;
Praveen, V. K. Acc. Chem. Res. 2007, 40, 644. (e) Zang, L.; Che, Y.; Moore,
J. S. Acc. Chem. Res. 2008, 41, 1596. (d) van Esch, J. H. Langmuir 2009,
25, 8392
.
(2) (a) Xing, B.; Choi, M.-F.; Xu, B. Chem.sEur. J. 2002, 8, 5028. (b)
Miravet, J. F.; Escuder, B. Chem. Commun. 2005, 5796. (c) Tu, T.;
Assenmacher, W.; Peterlik, H.; Schnakenburg, G.; Do¨tz, K. H. Angew.
Chem., Int. Ed. 2008, 47, 7127. (d) Basiat, G.; Leroux, J.-C. J. Mater. Chem.
2009, 19, 3867
.
10.1021/ol100953e 2010 American Chemical Society
Published on Web 06/10/2010