Scheme 4
of the di-p-methane rearrangement.8,9 Scheme 4 shows a
schematic representation of the necessary bond breaking
and forming processes without implying that the depicted
formulae represent actual intermediates involved in these
rearrangements.
This study shows that the boryl-functionalized siloles of the
types 2 and 3, bearing the conjugated boryl substituent in the
b-position, which are readily available from corresponding
sila-acetylene and borane precursors by the unique 1,1-hydro-
(or -carbo-)boration/1,1-vinylboration sequence, rearrange
readily and completely to their a-boryl regioisomers upon
photolysis. This combination of easily performed reactions
will probably make a variety of siloles with useful substituent
patterns readily available for applications in e.g. materials
science and elsewhere.
Fig. 1 Molecular structure of the photoproduct 4a (50% probability
of thermal ellipsoids).
Financial support from the Fonds der Chemischen Industrie
and the Deutsche Forschungsgemeinschaft is gratefully
acknowledged. We thank the BASF for a gift of solvents.
(single crystals were obtained from pentane at ꢀ30 1C).7 In the
crystal compound 4a features a planar five-membered hetero-
cyclic framework [Si1–C2: 1.892(3) A, Si1–C5: 1.866(3) A,
angle C2–Si1–C5: 93.5(2)1] with an alternating C4-unit
[C2–C3: 1.368(4) A, C3–C4: 1.494(4) A, C4–C5: 1.357(5) A].
Carbon atoms C2 and C3 carry the bulky trimethylsilyl
substituents [C2–Si21: 1.876(3) A, angle Si21–C2–C3:
130.9(3)1, C3–Si31: 1.899(3) A, angle Si31–C3–C2: 133.7(3)1]
and the –B(C6F5)2 substituent is attached at the a-carbon
atom C5 [C5–B1: 1.523(5) A]. The boron atom in compound
4a is planar tricoordinate (sum of the bonding angles: 360.01)
(Fig. 1). Compound 4a shows a 11B NMR resonance at d 61
and 29Si NMR signals at d 24.3 (SiMe2) and d ꢀ7.2 and ꢀ10.1
(SiMe3). The 13C NMR resonances of the central carbon
framework occur at d 181.1 (1JSi,C = 58.3 Hz, 1JSi,C = 42.2 Hz,
Notes and references
1 K. Tamao, S. Yamaguchi and M. Shiro, J. Am. Chem. Soc., 1994,
116, 11715; S. Yamaguchi and K. Tamao, J. Chem. Soc., Dalton
Trans., 1998, 3693; S. Yamaguchi, Y. Itami and K. Tamao,
Organometallics, 1998, 17, 4910; S. Yamaguchi, T. Endo,
M. Uchida, T. Izumizawa, K. Furukawa and K. Tamao,
Chem.–Eur. J., 2000, 6, 1683; S. Yamaguchi and K. Tamao, Chem.
Lett., 2005, 2.
2 G. Dierker, J. Ugolotti, G. Kehr, R. Frohlich and G. Erker, Adv.
Synth. Catal., 2009, 351, 1080, and references cited therein.
3 R. Koster, G. Seidel, J. Suß and B. Wrackmeyer, Chem. Ber., 1993,
126, 1107; R. Koster, G. Seidel, I. Klopp, C. Kruger, G. Kehr,
J. Suß and B. Wrackmeyer, Chem. Ber., 1993, 126, 1385;
B. Wrackmeyer, H. E. Maisel, J. Suß and W. Milius, Z. Naturforsch.,
1996, 51b, 1320; B. Wrackmeyer, M. H. Bhatti, S. Ali, O. L. Tok and
Y. N. Bubnov, J. Organomet. Chem., 2002, 657, 146; B. Wrackmeyer,
O. L. Tok, A. Khan and A. Badshah, Z. Naturforsch., 2005, 60b, 251;
Review: B. Wrackmeyer, Coord. Chem. Rev., 1995, 145, 125;
B. Wrackmeyer, Heteroat. Chem., 2006, 17, 188.
4 D. J. Parks, R. E. v. H. Spence and W. E. Piers, Angew. Chem., Int.
Ed., 1995, 34, 809 (Angew. Chem., 1995, 107, 895); R. E. v. H.
Spence, D. J. Parks, W. E. Piers, M.-A. MacDonald,
M. J. Zaworotko and S. J. Rettig, Angew. Chem., Int. Ed., 1995,
34, 1230 (Angew. Chem., 1995, 107, 1337); R. E. v. H. Spence,
W. E. Piers, Y. Sun, M. Parvez, L. R. MacGillivray and
M. J. Zaworotko, Organometallics, 1998, 17, 2459; W. E. Piers
and T. Chivers, Chem. Soc. Rev., 1997, 26, 345; D. J. Parks,
W. E. Piers and G. P. A. Yap, Organometallics, 1998, 17, 5492.
5 W. E. Piers, Adv. Organomet. Chem., 2005, 52, 1; T. Beringhelli,
D. Donghi, D. Maggioni and G. D’Alfonso, Coord. Chem. Rev.,
2008, 252, 2292 and references cited therein.
3
C2), 172.1 (C4, 1H NMR: d 8.11, JSi,H = 14.3 Hz), 171.5
(1JSi,C = 61.7 Hz, C3) and 151.6 (br, C5).
Photolysis of the Ph2Si-containing compound 3b proceeded
analogously. After 2 h irradiation time workup gave the
rearranged product 4b in ca. 71% yield (Scheme 2, for details
see the ESIz). We have also photolyzed the previously reported
C6F5 substituted analogue 2 (see Scheme 1). The photolysis
reaction required 6 h irradiation time to go to completion and
we isolated the isomer 5 in 58% yield from the workup
procedure (see Scheme 3).
These photolytic isomerisation reactions formally proceed
by mutual exchange of the C3-[B] and C5-[Si] moieties at the
five-membered heterocyclic framework. Although the mecha-
nistic details of this reaction still have to be elucidated, this
framework reorganization formally corresponds to the pattern
6 B. Wrackmeyer, H. E. Maisel, W. Milius, M. H. Bhatti and S. Ali,
Z. Naturforsch., 2003, 58b, 543; See also: E. Khan, S. Bayer and
B. Wrackmeyer, Z. Naturforsch., 2009, 64b, 47; E. Khan, S. Bayer
and B. Wrackmeyer, Z. Naturforsch., 2009, 64b, 995.
7 4a: the bright yellow solution of bis(trimethylsilylethynyl)dimethyl-
silane (1a) (365 mg, 1.445 mmol) and bis(pentafluorophenyl)borane
(500 mg, 1.445 mmol) in toluene (50 mL) was stirred overnight.
Subsequently the solution was irradiated for 4 hours to finally get 4a
as a yellow-brown solid (79%, 685 mg). Crystals suitable for X-ray
diffraction were obtained from a concentrated pentane solution
Scheme 3
at ꢀ30 1C. C24H25BF10Si3 (598.5): calcd.
C 48.16, H 4.21;
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3016–3018 | 3017