Organic Letters
Letter
Lett. 2007, 17, 2289−2292. (b) Cole, K. P.; Hsung, R. P. Org. Lett.
2003, 5, 4843−4846.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(13) Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. 2006, 128, 6499−
6507.
(14) Nakatsuji, H.; Ueno, K.; Misaki, T.; Tanabe, Y. Org. Lett. 2008,
10, 2131−2134.
(15) Luo, Y.; Carnell, A. J. Angew. Chem., Int. Ed. 2010, 49, 2750−
General experimental information; details regarding
catalyst discovery, optimization, and limitations; 1H
and 13C NMR spectra (PDF)
2754.
(16) Haber, F.; Weiss, J. Proc. R. Soc. London, Ser. A 1934, 147, 332−
351.
(17) Combination of organic peroxy radicals to generate oxygen:
(a) Bartlett, P. D.; Guenther, P. J. Am. Chem. Soc. 1966, 88, 3288−
3294. (b) Kirsch, L. J.; Parkes, D. A. J. Chem. Soc., Faraday Trans. 1
1981, 77, 293−307.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We acknowledge Jennifer Wang (Harvard University) for
assistance with mass spectrometry characterization.
■
REFERENCES
■
(1) Chassaing, S.; Specklin, S.; Weibel, J.; Pale, P. Tetrahedron 2012,
68, 7245−7273.
(2) Batsomboon, P.; Gold, B. A.; Alabugin, I. V.; Dudley, G. B.
Synthesis 2012, 44, 1818−1824.
(3) Martinez, A. G.; Fernandez, A. H.; Alvarez, R. M.; Munoz, G. S.
An. Quim. 1981, 77, 28−30.
(4) Consult Supporting Information Scheme SI for a detailed
description of these two processes: (a) Danishefsky, S. J., Bornmann,
W. G., Queneau, Y., Magee, T. V., Krol, W. J., Masters, J. J., Jung, J. K.
Total synthesis of taxol and analogues thereof. U.S. Patent 5488116,
January 30, 1996. (b) Elkin, M.; Szewczyk, S. M.; Scruse, A. C.;
Newhouse, T. R. J. Am. Chem. Soc. 2017, 139, 1790−1793.
(5) See Supporting Information Figure S1 for the application of
these two sets of conditions: (a) Yu, J.; Wu, H.; Corey, E. J. Org. Lett.
2005, 7, 1415−1417. (b) Catino, A. J.; Forslund, R. E.; Doyle, M. P. J.
Am. Chem. Soc. 2004, 126, 13622−13623.
(6) The following recent reviews of allylic oxidation chemistry are
instructive: (a) Weidmann, V.; Maison, W. Synthesis 2013, 45, 2201−
2221. (b) Nakamura, A.; Nakada, A. Synthesis 2013, 45, 1421−1451.
(7) For the use of iron(III) acac as an allylic oxidant, see:
(a) Kimura, M.; Muto, T. Chem. Pharm. Bull. 1979, 27, 109−112.
(b) Kimura, M.; Muto, T. Chem. Pharm. Bull. 1980, 28, 1836−1841.
(8) For reviews containing references to iron(III) chloride oxidative
chemistry, see: (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem.
Rev. 2004, 104, 6217−6254. (b) Bauer, I.; Knoelker, H. Chem. Rev.
2015, 115, 3170−3387. (c) Bolm, C.; Sarhan, A. A. O. Chem. Soc. Rev.
2009, 38, 2730−2744. A polymer-bound Schiff base iron(III) chloride
complex has been found to effect the oxidation of a limited number of
olefins to enones: Islam, S. M.; Paul, S.; Roy, A. S.; Banerjee, S.;
Ghosh, K.; Dey, R. C.; Santra, S. C. Transition Met. Chem. 2013, 38,
675−682.
(9) The benzylic overoxidation product of 2f was also isolated in
36% yield.
(10) See Supporting Information Table S1 for a description of
further optimization studies concerning 2u formation.
(11) Consult Supporting Information Figure S2 for a description of
limitations for the method.
(12) Representative synthetic sequences transforming a ketone to a
1,3-dicarbonyl oxidatively: (a) Krueger, C. A.; Madigan, D. L.; Green,
B. E.; Hutchinson, D. K.; Jiang, W. W.; Kati, W. M.; Liu, Y.; Maring,
C. J.; Masse, S. V.; McDaniel, K. F.; Middleton, T. R.; Mo, H.; Molla,
A.; Montgomery, D. A.; Ng, T. I.; Kempf, D. J. Bioorg. Med. Chem.
D
Org. Lett. XXXX, XXX, XXX−XXX