In summary, we have established that poly(quinoxaline-2,3-
diyl)s bearing chiral (R)-2-butoxy side chains adopt pure
right- and left-handed screw senses in CHCl3 and 1,1,2-trichloro-
ethane, respectively. The degrees of helix-sense induction were
determined by analyses of free energy differences of copolymers
consisting of achiral and chiral monomer units with varying
ratios. We assume that the helix switch may depend on solvent-
induced conformational changes of the chiral side chains.
Although each chiral group may gain a very small energy for
one helix, its accumulation in the helical polymer backbones can
cause a large macromolecular conformational change.12 Studies
for establishing the origin of the conformational change are
currently being undertaken in this laboratory.
Fig. 5 CD spectra of poly-(S)-3 in 1,1,2-trichloroethane and CHCl3.
that the solvent-dependent helix inversion does not rely crucially
on the presence of an oxygen atom in the side chain.
This work is supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
Notes and references
1 (a) R. P. Cheng, S. H. Gellman and W. F. DeGrado, J. Am. Chem.
Soc., 2001, 101, 3219; (b) D. J. Hill, M. J. Mio, R. B. Prince,
T. S. Hughes and J. S. Moore, Chem. Rev., 2001, 101, 3893;
(c) T. Nakano and Y. Okamoto, Chem. Rev., 2001, 101, 4013;
(d) J. J. L. Cornelissen, A. E. Rowan, R. J. M. Nolte and N. A. J.
M. Sommerdijk, Chem. Rev., 2001, 101, 4039; (e) E. Yashima,
K. Maeda and T. Nishimura, Chem.–Eur. J., 2004, 10, 42.
2 (a) J. Watanabe, S. Okamoto, K. Satoh, K. Sakajiri, H. Furuya
and A. Abe, Macromolecules, 1996, 29, 7084; (b) K. Maeda and
Y. Okamoto, Macromolecules, 1998, 31, 5164; (c) K. S. Cheon,
J. V. Selinger and M. M. Green, Angew. Chem., Int. Ed., 2000, 39,
1482; (d) M. Fujiki, J. Am. Chem. Soc., 2000, 122, 3336;
(e) M. Fujiki, J. R. Koe, M. Motonaga, H. Nakashima,
K. Terao and A. Teramoto, J. Am. Chem. Soc., 2001, 123, 6253.
3 (a) G. Maxein and R. Zentel, Macromolecules, 1995, 28, 8438;
(b) D. Pijper, M. G. Jongejan, A. Meetsma and B. L. Feringa,
J. Am. Chem. Soc., 2008, 130, 4541.
4 (a) Y. Okamoto, T. Nakano, E. Ono and K. Hatada, Chem. Lett.,
1991, 525; (b) M. M. Bouman and E. W. Meijer, Adv. Mater., 1995, 7,
385; (c) G. Bidan, S. Guillerez and V. Sorokin, Adv. Mater., 1996, 8,
157; (d) H. Nakako, R. Nomura and T. Masuda, Macromolecules,
2001, 34, 1496; (e) K. K. L. Cheuk, J. W. Y. Lam, J. Chen, L. M. Lai
and B. Z. Tang, Macromolecules, 2003, 36, 5947; (f) K. K. L. Cheuk,
J. W. Y. Lam, L. M. Lai, Y. Dong and B. Z. Tang, Macromolecules,
2003, 36, 9752; (g) K. Maeda, K. Morino and E. Yashima, J. Polym.
Sci., Part A: Polym. Chem., 2003, 41, 3625; (h) F. Sanda, K. Terada
and T. Masuda, Macromolecules, 2005, 38, 8149; (i) H. Zhao,
F. Sanda and T. Masuda, Polymer, 2005, 46, 2841.
It seems to be interesting to discuss the cause of the solvent
dependent helical sense inversion. Fig. 6 shows four representative
conformers A–D of helical poly(quinoxaline-2,3-diyl) poly-(R)-2
bearing chiral (R)-2-butoxy group, of which only 5 quinoxaline
units are shown. The (R)-2-butoxy groups except for those on the
central quinoxaline ring are omitted for clarity. The anti orienta-
tion of the two (R)-2-butoxy groups should be preferred for the
steric reason. Steric repulsion between the (R)-2-butoxy group
and the quinoxaline ring in conformers B and C may make these
conformations unfavorable, resulting in the preferential forma-
tion of conformers A and D. We assume that, for any reason, the
conformer A is favorable in chloroform, and conformation D is
favored in 1,1,2-TCE, although the cause of the solvent-
dependent conformational change of the chiral groups should
be clarified. The observed helix inversion of poly-(S)-3 indicates
that the solvent-dependent conformational change of the chiral
side chains is not limited to the alkoxy group, but extended to the
chiral alkyl group, which lacks an oxygen atom.
5 Non-hydrogen-bonding-based, solvent dependent inversion of
helical sense in double helical architecture has been reported:
T. Hasegawa, Y. Furusho, H. Katagiri and E. Yashima, Angew.
Chem., Int. Ed., 2007, 46, 5885.
6 I. Otsuka, R. Sakai, T. Satoh, R. Kakuchi, H. Kaga and
T. Kakuchi, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5855.
7 Y. Ito, E. Ihara, M. Murakami and M. Shiro, J. Am. Chem. Soc.,
1990, 112, 6446.
8 (a) Y. Ito, T. Ohara, R. Shima and M. Suginome, J. Am. Chem. Soc.,
1996, 118, 9188; (b) Y. Ito, T. Miyake, S. Hatano, R. Shima, T. Ohara
and M. Suginome, J. Am. Chem. Soc., 1998, 120, 11880; (c) Y. Ito,
T. Miyake, T. Ohara and M. Suginome, Macromolecules, 1998, 31,
1697; (d) Y. Ito, T. Miyake and M. Suginome, Macromolecules, 2000,
33, 4034; (e) M. Suginome, S. Collet and Y. Ito, Org. Lett., 2002, 4, 351.
9 T. Yamamoto and M. Suginome, Angew. Chem., Int. Ed., 2009, 48, 539.
10 T. Yamada, H. Noguchi, Y. Nagata and M. Suginome, J. Polym.
Sci., Part A: Polym. Chem., 2010, 48, 898.
11 M. Fujiki, Macromol. Rapid Commun., 2001, 22, 539.
12 S. Lifson, C. Andreola, N. C. Peterson and M. M. Green, J. Am.
Chem. Soc., 1989, 111, 8850.
13 See the Supplementary Information.
Fig. 6 Possible conformations of poly-(R)-2. Only five quinoxaline
units, of which chiral side chains except for those on the central
quinoxaline ring are omitted for clarity, are shown.
14 When solid poly-(R)-2 was obtained by evaporation of CHCl3 and
dissolved in 1,1,2-TCE at rt, gradual P-to-M helical inversion was
observed in the CD spectra. It takes a few hours to complete.
ꢀc
This journal is The Royal Society of Chemistry 2010
4916 | Chem. Commun., 2010, 46, 4914–4916