526
M. P. Quick et al. / Tetrahedron: Asymmetry 21 (2010) 524–526
SiMe3
H
TiCl4
O
8
N
N
O
O
O
Cl4Ti
cis-2
Scheme 3. Proposed mechanism for the stereoselective transfer of the allyl group at C-3 of the 2-benzazepine ring.
with AlH3, which was formed in situ by mixing LiAlH4 and AlCl3 in
a 1:3 ratio.17 The 3-allyl-substituted 2-benzazepine 10 was iso-
lated in 54% yield.
absorption correction (0.731 6 T 6 0.976), Z = 8, orthorhombic,
space group P212121 (No. 19), k = 1.54178 Å, T = 223(2) K, and u
scans, 44474 reflections collected ( h, k, l), [(sinh)/k] = 0.60 ÅÀ1
6268 independent (Rint = 0.081) and 5307 observed reflections
[I P 2
(I)], 436 refined parameters, R = 0.044, wR2 = 0.112, Flack
x
,
r
3. Conclusion
parameter 0.0(2), max. (min.) residual electron density 0.19
(À0.14) e ÅÀ3, hydrogen atoms calculated and refined as riding
atoms, two almost identical molecules in the asymmetric unit.
Data set was collected with a Nonius KappaCCD diffractometer.
Programs used: data collection COLLECT (Nonius, B.V. 1998), data
reduction Denzo-SMN,18 absorption correction Denzo,19 structure
The tricyclic oxazolidine cis-2 represents an interesting new
chiral building block for the synthesis of enantiomerically pure
3-substituted 2-benzazepines. The carefully optimized synthesis
of cis-2 comprises five reaction steps including the diastereoselec-
tive intramolecular formation of the tricyclic oxazolidine ring sys-
tem from 7. Ring opening of the oxazolidine ring of cis-2 with
allyltrimethylsilane and TiCl4 exclusively took place from the Re-
face leading to 2-benzazepines with (S)-configuration in position 3.
solution SHELXS-97,20 structure refinement SHELXL-97,21 graphics
22
SCHAKAL
.
CCDC 742207 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge at
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (internat.) +44(1223)336 033, E-mail: deposit@ccdc.
cam.ac.uk].
4. Experimental
4.1. Synthesis of (3S)-3-allyl-2-[(1R)-2-hydroxy-1-phenylethyl]-
2,3,4,5-tetrahydro-2-benzazepin-1-one 8
Acknowledgments
Under N2, tricyclic oxazolidine cis-2 (300 mg, 1.07 mmol) was
dissolved in CH2Cl2 (6 mL). Allyltrimethylsilane (2.9 mL,
18.2 mmol) and TiCl4 (6.4 mL, 6.4 mmol) were added carefully to
the solution. After microwave irradiation (CEM Discover LabMate
Microwave, ramp 5 min, run 5 min, P = 80 W, T = 70 °C), the mix-
ture was poured into water and extracted with CH2Cl2. The organic
layers were dried over Na2SO4, and filtered, after which silica gel
was added and the solvent was removed under reduced pressure.
The residue was purified by flash chromatography (hexane/ethyl
acetate = 8/2). Colorless needles, mp 156 °C, yield 223 mg (65%).
C21H23NO2 (Mr = 321.4). MS (ESI): m/z (%) = 665 (2M+Na, 100), 322
(M+H, 10). HRMS (ESI): m/z = calcd for C21H23NO2H+ 322.1801,
found 322.1802; m/z = calcd for C21H23NO2Na+ 344. 1621, found
344.1621; m/z = calcd for (C21H23NO2)2Na+ 665.3349, found
665.3350. 1H NMR (nitrobenzene-d5, 110 °C): d (ppm) = 1.18–1.22
(m, broad, 2H, CH2CH@CH2), 1.50–154 (m, broad, 1H, ArCH2CH2),
1.84–1.88 (m, broad, 1H, ArCH2CH2), 2.34–2.38 (m, broad, 1H,
ArCH2), 2.64–2.68 (m, broad, 1H, ArCH2), 3.19–3.22 (m, broad, 1 H,
ArCH2CH2CH), 3.88–3.93 (m, broad, 1H, CHCH2OH), 3.96–4.07 (m,
broad, 2H, CHCH2OH, CH@CH2), 4.20 (d, J = 10.2 Hz, 1H, CH@CH2),
4.659–4.63 (m broad, 1H, CH@CH2), 5.52–5.56 (s, broad, 1H,
CHCH2OH), 6.84–7.35 (m, 9H, Ar-H). The correct assignment of the
signals was accomplished by high temperature COSY experiments.
This work was performed within the framework of the Interna-
tional Research Training Group ‘Complex Functional Systems in Chem-
istry: Design, Synthesis and Applications’ in collaboration with
Nagoya University. Financial support of the IRTG Münster-Nagoya
and of this project by the Deutsche Forschungsgemeinschaft is grate-
fully acknowledged.
References
1. Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003, 68,
1919–1928.
2. Amat, M.; Pérez, M.; Minaglia, T.; Bosch, J. J. Org. Chem. 2008, 73, 6920–
6923.
3. Amat, M.; Llor, N.; Hidalgo, J.; Hernandez, A.; Bosch, J. Tetrahedron: Asymmetry
1996, 7, 977–980.
4. Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503–9569.
5. Meyers, A. I. J. Org. Chem. 2005, 70, 6137–6151.
6. Munchhof, M. J.; Meyers, A. I. J. Org. Chem. 1995, 60, 7084–7085.
7. Wirt, U.; Fröhlich, R.; Wünsch, B. Tetrahedron: Asymmetry 2005, 16, 2199–2202.
8. Wirt, U.; Schepmann, D.; Wünsch, B. Eur. J. Org. Chem. 2007, 462–475.
9. Husain, S. M.; Fröhlich, R.; Wünsch, B. Tetrahedron: Asymmetry 2008, 19, 1613–
1616.
10. Husain, S. M.; Fröhlich, R.; Wünsch, B. J. Org. Chem. 2009, 74, 2788–2793.
11. Husain, S. M.; Heim, M. T.; Schepmann, D.; Wünsch, B. Tetrahedron: Asymmetry
2009, 20, 1383–1392.
12. Husain, S. M.; Fröhlich, R.; Schepmann, D.; Wünsch, B. Z. Naturforsch., in press.
13. Maier, C. A.; Wünsch, B. Eur. J. Org. Chem. 2003, 714–720.
14. Padwa, A.; Zanka, A.; Cassidy, M. P.; Harris, J. M. Tetrahedron 2003, 59, 4939–
4944.
15. Trost, B. M.; Weiss, A. Angew. Chem., Int. Ed. 2007, 7664–7666.
16. Han, G.; LaPorte, M. G.; McIntosh, M. C.; Weinreb, S. M.; Parvez, M. J. Org. Chem.
1996, 61, 9483–9493.
IR (neat):
m
(cmÀ1) = 3347 (OH), 1608 (CONR2), 916 (C@CH2). Spe-
cific rotation: [a]D = +7.9 (c 1.04, CHCl2). Purity by HPLC: 99.6%
(tR = 18 min).
A sample of 8 was recrystallized from MeOH, which gave color-
less crystals suitable for X-ray crystal structure analysis.
17. Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656–1662.
18. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307–326.
19. Otwinowski, Z.; Borek, D.; Majewski, W.; Minor, W. Acta Crystallogr., Sect. A
2003, 59, 228–234.
4.2. X-ray crystal structure analysis of 8
20. Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467–473.
21. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, A64, 112–122.
22. Keller, E. 1997.
Formula C21H23NO2, M = 321.40, light colorless crystal 0.55 Â
0.20 Â 0.04 mm, a = 8.7429(3), b = 17.4383(6), c = 23. 1886(10) Å,
V = 3535.4(2) Å3,
q , l
calcd = 1.208 g cmÀ3 = 0.607 mmÀ1, empirical