5158
M. Angiolini et al. / Tetrahedron Letters 50 (2009) 5156–5158
O
O
OMe
O
OMe
O
a
EtO
MeO
N
N
N
N
H
H
6
6a
O
O
OMe
O
OH
O
HO
HN
b, c
N
N
N
H
N
H
7
8
Scheme 5. Reagents and conditions: (a) THF–H2O–MeOH 3:1:1, LiOH, rt, 72 h, 85%; (b) DCM, TEA, TBTU, benzylamine, rt, 2 h, 85%; (c) LiOH, MeOH, rt, 18 h, 80%.
2. (a) Seefeld, M. A.; Rouse, M. B.; McNulty, K. C.; Sun, L.; Wang, J.; Yamashita, D. S.;
sponding dimethyl ester intermediate 6a, the complete and selec-
tive hydrolysis of the more reactive aliphatic ester with 2 equiv of
Luengo, J. I.; Zhang, S. Y.; Minthorn, E. A.; Concha, N. O.; Heerding, D. A. Bioorg.
Med. Chem. Lett. 2009, 19, 2244–2248; (b) Kim, K. S.; Zhang, L.; Schmidt, R.; Cai,
LiOH in a methanol–water–THF mixture. The reaction was quite
clean and furnished slowly the monoacid compound 7 in good
yield by a simple one-pot procedure. Subsequent coupling of inter-
mediate 7 with benzylamine in DCM with TBTU and further hydro-
Z. W.; Wei, D.; Williams, D. K.; Lombardo, L. J.; Trainor, G. L.; Xie, D.; Zhang, Y.;
An, Y.; Sack, J. S.; Tokarski, J. S.; Darienzo, C.; Kamath, A.; Marathe, P.; Zhang, Y.;
Lippy, J.; Jeyaseelan, R., Sr.; Wautlet, B.; Henley, B.; Gullo-Brown, J.; Manne, V.;
Hunt, J. T.; Fargnoli, J.; Borzilleri, R. M. J. Med. Chem. 2008, 51, 5330–5341; (c)
Tang, J.; Hamajima, T.; Nakano, M.; Sato, H.; Dickerson, S. H.; Lackey, K. E. Bioorg.
Med. Chem. Lett. 2008, 18, 4610–4614; (d) Casuscelli F.; Casale, E.; Faiardi, D.;
Piutti, C.; Mongelli, N.; Traquandi, G. Patent Application EP2002836, 2008.
3. (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581; (b) Heck, R.
F., ; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320–2322; (c) Beletskaja, P. I.;
Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066.
4. (a) Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469–3472;
(b) Hennessy, E. J.; Buchwald, S. L. Org. Lett. 2002, 4, 269–272.
5. Caldwell, J. J.; Cheung, K. M.; Collins, I. Tetrahedron Lett. 2007, 48, 1527–1529.
6. Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874–922.
7. (a) Torisu, K.; Kobayashi, K.; Iwahashi, M.; Nakai, Y.; Onoda, T.; Nagase, T.;
Sugimoto, I.; Okada, Y.; Matsumoto, R.; Nanbu, F.; Ohuchida, S.; Nakai, H.; Toda,
M. Bioorg. Med. Chem. 2004, 12, 4685–4700; (b) Alemany, C.; Bach, J.; Garcia, J.;
Lopez, M.; Rodriguez, A. B. Tetrahedron 2000, 56, 9305–9312.
lysis of the
a,b-unsaturated ester moiety with 10 equiv of LiOH
afforded the representative amide monoacid derivative 8, proving
that the new tricyclic scaffold can also be easily functionalized
by simple chemical manipulation (Scheme 5).
In conclusion, we have described the preparation of a new func-
tionalized tricyclic scaffold containing the 7-azaindole core by a
multistep synthesis. The crucial cyclization reaction to the seven-
membered ring was accomplished in acceptable yield by employ-
ing the Herrmann–Beller palladacycle catalyst. The two carboxylic
ester functions could be differentiated taking advantage of the
8. (a) Herrmann, W. A.; Brossmer, C.; Öfele, K.; Reisinger, C. P.; Priermeier, T.;
Beller, M.; Fischer, H. Angew. Chem. 1995, 107, 1989–1992; (b) Herrmann, W. A.;
Brossmer, C.; Öfele, K.; Reisinger, C. P.; Priermeier, T.; Beller, M. Chem. Eur. J.
1997, 3, 1354–1367; (c) Tietze, L. F.; Schirok, H.; Wöhrmann, M.; Schrader, K.
Eur. J. Org. Chem. 2000, 2433–2444.
9. Experimental procedure for the synthesis of compound 6 by the intramolecular Heck
reaction: To a 0.025 M solution of compound 5a (0.736 mmol, 1 equiv) in a
mixture of 5:1 DMF–H2O under argon atmosphere, the catalyst (0.05 mmol,
0.07 equiv) and NBu4AcO (2.65 mmol, 3.6 equiv) were added. The mixture was
stirred at 130 °C for 8 h and treated with ethyl acetate, dried over Na2SO4, and
evaporated to dryness. The crude was purified by flash column chromatography
(AcOEt/hexane 1:1) affording the title compound as white solid in 30% yield.
MS–ESI for C16H17N2O4 (MH+): 301.18; MS–ESI for C16H15N2O4 (MHꢀ): 299.16.
1H NMR (400 MHz, CDCl3): d 1.18 (t, 3H, J = 5.5 Hz), 2.92 (d, 1H, J = 5.8 Hz), 3.84
(s, 3H), 4.15 (m, 3H), 4.37 (dd, 1H, J = 5.8 and 1.2 Hz), 7.22 (d, 1H, J = 5.1 Hz), 7.64
(s, 1H), 7.85 (s, 1H), 8.17 (d, 1H, J = 5.1 Hz), 12.11 (br s, 1H).
higher reactivity of the saturated vis-a-vis the a,b-unsaturated es-
ter. In fact complete and selective hydrolysis of the aliphatic ester
led to the versatile intermediate 7. This compound is amenable to
further manipulation by exploiting the chemistry of carboxylic
functional group, thus opening opportunities for a diversity-ori-
ented synthesis. Moreover the tricyclic scaffold represents a novel
pharmacophore with attractive and original profile.
References and notes
1. (a) Bartberger, M. D.; Sukits, S.; Wilde, C.; Soukup, T. Synthesis 2008, 201–214;
(b) Popowycz, F.; Routier, S.; Joseph, B.; Mérour, J. Y. Tetrahedron 2007, 63, 1031–
1064; (c) Mérour, J. Y.; Benoît, J. Curr. Org. Chem. 2001, 5, 471–506.