1186
M. Martín-Rodríguez et al. / Tetrahedron: Asymmetry 21 (2010) 1184–1186
SO2Ph
CO2Me
bis(phenylsulfonyl)ethylene, and a-substituted iminoesters, than
PhO2S
PhO2S
Ar
SO2Ph
the (Sa)-Binap-silver(I) trifluoroacetate complex.11
(Sa)-Binap-AuTFA (10 mol%)
toluene, rt, 48 h
CO2Me
N
H
Ar
N
Acknowledgments
1
endo-5
This work has been supported by the DGES of the Spanish
Ministerio de Educación y Ciencia (MEC) (Consolider INGENIO
2010 CSD2007-00006, and CTQ2007-62771/BQU), by the General-
itat Valenciana (PROMETEO/2009/039), and by the University of
Alicante. M.M.-R. thanks MEC for a predoctoral fellowship and
F.-L. W. thanks the UQ Graduate School for a Research Travel Grant.
Scheme 4.
Table 3
Gold-catalyzed
1,3-DC
between
iminoglycinates
1
and
trans-1,2-
bis(phenylsulfonyl)ethylene
Yielda,b (%)
eec (%)
References
Entry
1
Ar
Base (10 mol %)
5
1
1a
1a
1a
1f
1f
1g
1g
Ph
Ph
Ph
4-MeC6H4
4-MeC6H4
3-Pyridyl
3-Pyridyl
DIPEA
—
—
DIPEA
—
DIPEA
—
5a
5a
5a
5f
5f
5g
5g
80
74
76
81
67
73
73
86
99
96
88
99
96
96
1. Special issue on coinage metals: Lipshutz, B. H; Yamamoto, Y. Eds. Chem. Rev.
2008, 108, 2793–3442.
2. (a) Karoyan, P.; Sagan, S.; Lequin, O.; Quancard, J.; Lavielle, S.; Chassaing, G.
Targets Heterocycl. Syst. 2004, 8, 216–273; (b) Nájera, C.; Sansano, J. M. Chem.
Rev. 2007, 107, 4273–4303; (c) Calaza, M. I.; Cativiela, C. Eur. J. Org. Chem. 2008,
3427–3448.
3. For recent reviews, see: (a) Nájera, C.; Sansano, J. M.; Yus, M. J. Braz. Chem. Soc.
2010, 21, 377–412; (b) Nájera, C.; Sansano, J. M. Topics Heterocyclic Chem., Ed.
Hassner, A. 2008, 12, 117–146.; (c) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008,
108, 2887–2902; (d) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García,
I. Chem. Rev. 2008, 108, 3174–3198; (e) Naodovic, M.; Yamamoto, H. Chem. Rev.
2008, 108, 3132–3148; (f) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247–
12275; (g) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484–
4517; (h) Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2873–2888; (i) Bonin,
M.; Chauveau, A.; Micouin, L. Synlett 2006, 2349–2363; (j) Nájera, C.; Sansano, J.
M. Angew. Chem., Int. Ed. 2005, 44, 6272–6276; (k) Husinec, S.; Savic, V.
Tetrahedron: Asymmetry 2005, 16, 2047–2061.
4. Widenhoefer, R. A. Chem. Eur. J. 2008, 14, 5381–5382.
5. Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638–
12639.
6. Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400–13401.
7. (a) Nájera, C.; Retamosa, M. G.; Sansano, J. M. Org. Lett. 2007, 9, 4025–4028; (b)
Nájera, C.; Retamosa, M. G.; Sansano, J. M.; de Cózar, A.; Cossío, F. P.
Tetrahedron: Asymmetry 2008, 19, 2913–2923.
8. Martín-Rodríguez, M.; Nájera, C.; Sansano, J. M.; Costa, P. R. R.; Crizanto de
Lima, E.; Dias, A. G. Synlett 2010, 962–966.
2
3d
4
5
6
7
a
b
c
Isolated yields after flash chromatography (silica gel).
The observed endo:exo ratio was always >98:2 (1H NMR).
Determined by chiral HPLC analysis.
d
Reaction performed with (Sa)-Binap-AgTFA.
the data obtained were in accordance with those published. Thus,
the 31P NMR analysis of [(Sa)-Binap-AuTFA]2 in CDCl3 showed a
singlet at 41.1 ppm, whereas the (Sa)-Binap-AuCl complex gave a
singlet at 23.3 ppm; in the case of ESI-MS experiments, peaks at
819, 819.2 and 819.6 were observed on elution with a mixture of
acetonitrile and water, demonstrating the existence of such a
dimeric complex. Further experimental and theoretical studies on
the structure of the dimeric 1:1 Binap-gold complexes and the
1,3-dipole are currently underway.
9. (a) Wheaton, C. A.; Jennings, M. C.; Puddephatt, R. J. J. Am. Chem. Soc. 2006, 128,
15370–15371; (b) Wheaton, C. A.; Jennings, M. C.; Puddephatt, R. J. Z.
Naturforsch., B: J. Chem. Sci. 2009, 64, 1469–1477.
10. For recent reviews about multifunctional catalysis see: (a) Shibasaki, M.; Kanai,
M.; Matsunaga, S. Aldrichimica Acta 2006, 39, 31–39; (b) Kanai, M.; Kato, N.;
Ichikawa, E.; Shibasaki, M. Pure Appl. Chem. 2005, 77, 2047–2052; (c) Kanai, M.;
Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005, 1491–1508; (d) Ma, J.-M.;
Cahard, D. Angew. Chem., Int. Ed. 2004, 43, 4566–4583.
11. General procedure for the catalytic enantioselective 1,3-DC using (Ra)- or (Sa)-
BinapAuTFA complexes: To a solution of the in situ prepared chiral gold
complex (0.05 mmol, 46 mg) in toluene (2 mL) was added at room temperature
3. Conclusion
In conclusion, it has been demonstrated that cationic gold com-
plexes efficiently catalyze 1,3-DC of azomethine ylides and dipol-
arophiles. Chiral (Ra)- and (Sa)-Binap-AuTFA complexes work as
bifunctional catalysts.10 The trifluoroacetate acts as Brønsted base
forming the imino ester enolate, which is coordinated with the Le-
wis acid, the Binap-gold cation. In general, the (Sa)-Binap-gold(I)
trifluoroacetate complex induces higher enantioselections, even
with sterically hindered substrates such as, NPM, trans-1,2-
a
solution of the iminoester (0.5 mmol) and dipolarophile (0.5 mmol) in
toluene (2 mL). In some cases DIPEA (0.05 mmol, 14 L) was added (see Tables)
l
and the mixture was stirred at room temperature for 16–48 h (see Tables) The
reaction was filtered off and the organic filtrate was directly evaporated and
the residue was purified by recrystallization or by flash chromatography
yielding pure endo-cycloadducts 2, 4, or 5.