Z. Garc´ıa-Herna´ndez – F. P. Gabba¨ı · 2-(Dimesitylboryl)benzylideneamines
1385
(0.20 g). Further purification was achieved by recrystalliza- (calcd. 398.251 for C27H33BNO, [M+H]+). – C27H32BNO
◦
tion from CHCl3. M. p. 135 – 138 C. – UV/Vis (CHCl3): (397.4): calcd. C 81.60, H 8.11, N 3.52; found C 81.36,
λ
max(lgεmax) = 240 nm (4.91). – 1H NMR (399.59 MHz; H 8.23, N 3.61.
CDCl3): δ = 0.80 (t, 3H, 3J = 7.2 Hz), 1.42 (br s, 4H,
2CH2), 1.85 (br s, 3H, CH3-Mes), 2.00 (br s, 3H, CH3-
Mes), 2.19 (br s, 12H, CH3-Mes), 3.78, 3.86 (s, s, 2H,
CH2), 6.513 (s, 1H, H-Mes), 6.59 (s, 1H, H-Mes), 6.76 (s,
2H, H-Mes), 7.19 (ddd, 1H, 3,4,5J = 8.0, 7.6, 1.2 Hz, CH),
7.31 (ddd, 1H, 3,4,5J = 8.0, 7.6, 1.2 Hz, CH), 7.63 (d, 1H,
3J = 7.6 Hz, CH), 7.70 (d, 1H, 3J = 7.2 Hz, CH), 8.48 (s,
Crystallography
Details pertinent to the crystal structure determinations
are listed in Table 1. The measurements were carried out
using a Bruker Apex II-CCD area detector diffractome-
ter with a graphite-monochromated MoKα radiation (λ =
˚
0.71073 A). Crystals of appropriate size were selected and
1H, N=CH). – 11B{ H} NMR (128.2 MHz; CDCl3): δ =
1
mounted onto a nylon loop with Apiezon grease. Struc-
ture solution was accomplished using Direct Methods, which
successfully located most of the non-H atoms. Subsequent
refinement on F2 using the SHELXTL/PC package (ver-
sion 5.1) [20] allowed the location of the remaining non-
H atoms.
CCDC 741373 (4) and 741372 (5) contain the supple-
mentary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
cif.
5 (w1/2 = 253 Hz). – 13C NMR (100.48 MHz; CDCl3): δ =
13.8 (CH3-Bu), 20.5, 32.4 (2CH2), 52.1 (NCH2), 21.0 (CH3-
Mes), 25.7 (CH3-Mes), 125.2, 125.7, 129.5, 130.5, 131.0,
132.4 (all CH), 128.7, 133.3, 134.7, 136.9, 137.1, 141.4,
141.7, 143.7 (all Cipso), 166.8 (C=N). – IR (film): ν = 3556,
2960, 2929, 2867, 1607, 1549, 1442, 1374 cm−1. – HRMS
((+)-ESI): m/z = 409.414 (calcd. 410.4019 for C29H37BN,
[M+H]+). – C29H36BN (409.4): calcd. C 85.08, H 8.86,
N 3.42; found C 84.83, H 8.85, N 3.48.
2-(Dimesitylboryl)benzylideneethanolamine (5)
Compound 5 was prepared in the same way as 4 in a crude
yield of 96 %. Further purification could also be achieved
by recrystallization from CHCl3. M. p. 190 – 192 ◦C. –
UV/Vis (CHCl3): λmax(lgεmax) = 240 nm (4.70). – 1H NMR
(399.59 MHz; CDCl3): δ = 1.92 (s, 3H, CH3-Mes), 1.98 (s,
3H, CH3-Mes), 2.19 (s, 12H, CH3 CH3-Mes), 2.75, 3.48 (s,
s, 2H, CH2), 4.05 (br s, 3H, CH2 and OH), 6.51 (s, 1H, H-
Mes), 6.61 (s, 1H, H-Mes), 6.73 (s, 1H, H-Mes), 6.77 (s,
1H, H-Mes), 7.20 (ddd, 1H, 3,4J = 7.6, 7.2, 1.2 Hz, CH),
7.33 (ddd, 1H, 3,4J = 7.6, 7.2, 1.2 Hz, CH), 7.66 (d, 1H,
3J = 7.6 Hz, CH), 7.72 (d, 1H, 3J = 7.6 Hz, CH), 8.67 (s,
Computational details
DFT geometry optimization and TD-DFT calculations
were carried out at the B3LYP/6-31G(d) level of theory using
the GAUSSIAN 03 suite of programs [21]. Frequency calcu-
lations carried out on the optimized structures confirmed the
absence of imaginary frequencies.
Acknowledgement
We gratefully acknowledge the following agencies for
funding: CONACyT (Grant 123605), the National Science
Foundation (CHE-0646916), and the Welch Foundation (A-
1423).
1
1H, N=CH). – 11B{ H} NMR (128.2 MHz; CDCl3): δ = 5
(w1/2 = 273 Hz). – 13C NMR (100.48 MHz; CDCl3): δ =
21.0 (CH3-Mes), 25.6, 25.7 (2CH3-Mes), 54.7 (NCH2), 61.7
(OCH2), 125.2, 126.2, 129.6, 130.5, 130.8, 132.6 (all CH),
129.3, 133.3, 135.0, 136.8, 136.9, 141.3, 141.7, 143.9 (all
Cipso), 170.0 (C=N). – IR (film): ν = 3551, 2916, 1547, 1609,
1454, 1438, 1374 cm−1. – HRMS ((+)-ESI): m/z = 397.414
Note added in proof
After this work was submitted, a paper describing the syn-
thesis of closely related 2-boryl-benzylideneamines has ap-
peared [22].
[1] S. Yamaguchi, A. Wakamiya, Pure Appl. Chem. 2006,
78, 1413 – 1424.
[2] Z. M. Hudson, S. Wang, Acc. Chem. Res. 2009, on line.
[3] C. D. Entwistle, T. B. Marder, Chem. Mater. 2004, 16,
4574 – 4585.
[4] D. W. Stephan, Dalton Trans. 2009, 3129 – 3136.
[5] T. W. Hudnall, C.-W. Chiu, F. P. Gabba¨ı, Acc. Chem.
Res. 2009, 42, 388 – 397.
[7] N. Matsumi, Y. Chujo, Poly. J. 2008, 40, 77 – 89.
[8] A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891 –
4932.
[9] F. P. Gabba¨ı, Angew. Chem. 2003, 115, 2318 – 2321;
Angew. Chem. Int. Ed. 2003, 42, 2218 – 2221.
[10] X. Y. Liu, D. R. Bai, S. Wang, Angew. Chem. 2006, 118,
5601 – 5604; Angew. Chem. Int. Ed. 2006, 45, 5475 –
5478.
[6] G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem.
2008, 120, 1202 – 1219; Angew. Chem. Int. Ed. 2008,
47, 1184 – 1201.
[11] V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger,
M. Leskelae, T. Repo, P. Pyykko¨, B. Rieger, J. Am.
Chem. Soc. 2008, 130, 14117 – 14119.
Unauthenticated
Download Date | 10/23/18 11:29 AM