exhibit antitumor,1b,d,2g,i,3e,6 antiulcer,1c antiallergic,7 selec-
tive COX-2 inhibition,2g,8 selective MAO-B inhibition
activities,2f,g,i,9 and ligands for nuclear hormone receptors.10
These features have spurred growing efforts to develop more
efficient syntheses of 3(2H)-furanones. Traditional routes to
substituted 3(2H)-furanones utilize a cyclization/dehydration
reaction of 1-hydroxy-2,4-diketones under the action of
acids2a,4b,11 or K2CO3.5a Among the alternative methods are
the hydrogenolyses and subsequent acidic hydrolyses of
isoxazoles,2c,6b,12 the aldol reaction of 3-silyloxyfuranes,13
the base-catalyzed cyclizations of 1-halo-2,4-diketones,14 and
the Knoevenagel-type condensation of R-acyloxycarbonyl
compounds.1d,15 Recently, Au(III)-, Ag(I)-, Cu(I)-, Hg(II)-,
Pd(II)-, or Pt(II)-catalyzed cyclizations of propargylic
ketols,2g,16 R-hydroxy ynones,17 and 2-oxo-3-butynoic esters
or disubstituted 1,2-diones18 to 3(2H)-furanones have at-
tracted attention. More recently, the combination of (p-
CF3C6H4)3PAuCl and AgOTf has been shown to actively
catalyze the cyclizations of γ-hydroxyalkynones to 3(2H)-
furanones.2i Still, the further development of more efficient
and atom-economical routes to functionalized 3(2H)-fura-
nones remains a focus of modern organic synthesis.
free conditions at 20-25 °C in the presence of Et3N in
MeCN (Table 1).
Table 1. Synthesis of 4-Cyano-3(2H)-furanonesa
Herein, we report the hitherto unknown and extremely
facile domino reaction between R,ꢀ-acetylenic γ-hydroxy
nitriles 1-3 and arenecarboxylic acids 4-11 to deliver a
novel family of functionalized 3(2H)-furanones, namely
5-aryl-4-cyano-2,2-dialkyl-3(2H)-furanones 12-21 in 67-86%
yield. The reaction proceeds smoothly under transition-metal-
(3) (a) Raffauf, R. F.; Huang, P.-K. C.; Le Quesne, P. W.; Levery, S. B.;
Brennan, T. F. J. Am. Chem. Soc. 1975, 97, 6884. (b) Le Quesne, P. W.;
Levery, S. B.; Menachery, M. D.; Brennan, T. F.; Raffauf, R. F. J. Chem.
Soc., Perkin Trans. 1 1978, 1572. (c) Takao, K.; Ochiai, H.; Hashizuka,
T.; Koshimura, H.; Tadano, K.; Ogawa, S. Tetrahedron Lett. 1995, 36, 1487.
(d) Takao, K.; Ochiai, H.; Yoshida, K.; Hashizuka, T.; Koshimura, H.;
Tadano, K.; Ogawa, S. J. Org. Chem. 1995, 60, 8179. (e) Li, Y.; Hale,
K. J. Org. Lett. 2007, 9, 1267.
(4) (a) Kupchan, S. M.; Sigel, C. W.; Matz, M. J.; Gilmore, C. J.; Bryan,
R. F. J. Am. Chem. Soc. 1976, 98, 2295. (b) Smith, A. B., III.; Guaciaro,
M. A.; Schow, S. R.; Wovkulich, P. M.; Toder, B. H.; Hall, T. W. J. Am.
Chem. Soc. 1981, 103, 219. (c) Smith, A. B., III.; Malamas, M. S. J. Org.
Chem. 1982, 47, 3442. (d) Taylor, M. D.; Smith, A. B., III.; Furst, G. T.;
Gunasekara, S. P.; Bevelle, C. A.; Cordell, G. A.; Farmworth, N. R.;
Kupchan, S. M.; Uchida, H.; Branfman, A. R.; Dailey, R. G., Jr.; Sneden,
A. T. J. Am. Chem. Soc. 1983, 105, 3177. (e) Schmeda-Hirschmann, G.;
Razmilic, I.; Sauvain, M.; Moretti, C.; Mun˜oz, V.; Ruiz, E.; Balanza, E.;
Fournet, A. Phytother. Res. 1996, 10, 375. (f) Pertino, M.; Schmeda-
Hirschmann, G.; Santos, L. S.; Rodr´ıguez, J. A.; Theoduloz, C. Z.
Naturforsch. 2007, 62b, 275.
(5) (a) Shao, X.; Tamm, C. Tetrahedron Lett. 1991, 32, 2891. (b)
Ishikawa, M.; Ninomiya, T. J. Antibiot. 2008, 61, 692. (c) Ishikawa, M.;
Ninomiya, T.; Akabane, H.; Kushida, N.; Tsujiuchi, G.; Ohyama, M.; Gomi,
S.; Shito, K.; Murata, T. Bioorg. Med. Chem. 2009, 1457.
(6) (a) Ishida, Y.; Tsuruta, H.; Tsuneta, S. T.; Uno, T.; Watanabe, K.;
Aizono, Y. Biosci. Biotechnol. Biochem. 1998, 62, 2146. (b) Chimichi, S.;
Boccalini, M.; Cosimelli, B.; Dall’Acqua, F.; Viola, G. Tetrahedron 2003,
59, 5215. (c) Rappai, J. P.; Raman, V.; Unnikrishnan, P. A.; Prathapan, S.;
Thomas, S. K.; Paulose, C. S. Bioorg. Med. Chem. Lett. 2009, 19, 764.
(7) Mack, R. A.; Zazulak, W. I.; Radov, L. A.; Baer, J. E.; Stewart,
J. D.; Elzer, P. H.; Kinsolving, C. R.; Georgiev, V. S. J. Med. Chem. 1988,
31, 1910.
a Reaction conditions: acetylenes 1-3 (1 mmol), arenecarboxylic acids
4-11 (1 mmol), Et3N (1 mmol), MeCN (6 mL), 20-25 °C, 48 h. b Isolated
yield after recrystallization or preparative TLC.
(8) (a) Silverstein, F. E.; Faich, G.; Goldstein, J. L.; Simon, L. S.; Pincus,
T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N. M.; Stenson, W. F.;
Burr, A. M.; Zhao, W. W.; Kent, J. D.; Lefkowith, J. B.; Verburg, K. M.;
Geis, G. S. JAMA, J. Am. Med. Assoc. 2000, 284, 1247. (b) Shin, S. S.;
Byun, Y.; Lim, K. M.; Choi, J. K.; Lee, K.-W.; Moh, J. H.; Kim, J. K.;
Jeong, Y. S.; Kim, J. Y.; Choi, Y. H.; Koh, H.-J.; Park, Y.-H.; Oh, Y. I.;
Noh, M.-S.; Chung, S. J. Med. Chem. 2004, 47, 792. (c) Shamshina, J. L.;
Snowden, T. S. Tetrahedron Lett. 2007, 48, 3767.
The 3(2H)-furanones 12-21 are crystalline compounds
with sharp melting points and good solubility in most organic
solvents (examples: acetone, acetonitrile, benzene, chloro-
form, diethyl ether, dimethyl sulfoxide, ethanol, methanol)
and poor solubility in water. In addition, the structure of
Org. Lett., Vol. 12, No. 14, 2010
3201