ORGANIC
LETTERS
2010
Vol. 12, No. 14
3272-3275
Copper-Catalyzed Alkynylation of
Amides with Potassium
Alkynyltrifluoroborates: A
Room-Temperature, Base-Free Synthesis
of Ynamides
Ke´vin Jouvin, Franc¸ois Couty, and Gwilherm Evano*
Institut LaVoisier de Versailles, UMR CNRS 8180, UniVersite´ de Versailles
Saint-Quentin en YVelines, 45, aVenue des Etats-Unis, 78035 Versailles Cedex, France
eVano@chimie.uVsq.fr
Received June 9, 2010
ABSTRACT
An efficient copper-mediated method for the coupling of potassium alkynyltrifluoroborates with nitrogen nucleophiles is reported. This reaction
provides the first base-free and room-temperature synthesis of ynamides and allows for an easy preparation of these useful building blocks.
Heteroatom-substituted acetylenes probably represent the
most versatile class of alkynes. An especially useful subgroup
is the one containing a nitrogen atom directly attached to
the triple bond: ynamides.1 They display an exceptionally
fine balance of stability and reactivity, offer unique and
multiple opportunities for the inclusion of nitrogen-based
functionalities into organic molecules, and are emerging as
especially useful and versatile building blocks. The beginning
of the 21st century has witnessed an ever increasing number
of new reactions or synthetic sequences starting from
ynamides2 which have been used for the synthesis of various
natural products3 and for the rapid elaboration of complex
scaffolds.
alkynes,6 1,1-dihalo-1-alkenes,7 or propiolic acids8 have
emerged as efficient strategies for the preparation of yna-
mides. While these procedures did clearly contribute to
(2) For selected recent examples, see: (a) Saito, N.; Katayama, T.; Sato,
Y. Org. Lett. 2008, 10, 3829. (b) Istrate, F. M.; Buzas, A. K.; Jurberg,
I. D.; Odabachian, Y.; Gagosz, F. Org. Lett. 2008, 10, 925. (c) Zhang, Y.;
DeKorver, K. A.; Lohse, A. G.; Zhang, Y.-S.; Huang, J.; Hsung, R. P. Org.
Lett. 2009, 11, 899. (d) Gourdet, B.; Lam, H. W. J. Am. Chem. Soc. 2009,
131, 3802. (e) Das, J. P.; Chechik, H.; Marek, I. Nat. Chem. 2009, 1, 128.
(f) Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T. Org. Lett. 2009, 11, 221.
(g) Coste, A.; Couty, F.; Evano, G. Org. Lett. 2009, 11, 4454. (h) DeKorver,
K. A.; Hsung, R. P.; Lohse, A. G.; Zhang, Y. Org. Lett. 2010, 12, 1840. (i)
Gourdet, B.; Rudkin, M. E.; Lam, H. W. Org. Lett. 2010, 12, 2554. (j)
Banerjee, B.; Litvinov, D. N.; Kang, J.; Bettale, J. D.; Castle, S. L. Org.
Lett. 2010, 12, 2650.
(3) (a) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.;
Davis, A. Org. Lett. 2005, 7, 1047. (b) Couty, S.; Meyer, C.; Cossy, J.
Tetrahedron Lett. 2006, 47, 767. (c) Alayrac, C.; Schollmeyer, D.; Witulski,
B. Chem. Commun. 2009, 1464.
Over the past decades, the use of hypervalent alkynyli-
odonium salts as alkynylating agents4 and the copper-
catalyzed coupling of amides with alkynyl halides,5 terminal
(4) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489.
(5) (a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.;
Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc.
2003, 125, 2368. (b) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5,
4011. (c) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera,
E. L. Org. Lett. 2004, 6, 1151.
(1) For reviews, see: (a) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.;
Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575. (b) Mulder,
J. A.; Kurtz, K. C. M.; Hsung, R. P. Synlett 2003, 1379. (c) Katritzky,
A. R.; Jiang, R.; Singh, S. K. Heterocycles 2004, 63, 1455. (d) Evano, G.;
Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840. (e) DeKorver,
K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P.
Chem. ReV., 2010, DOI: 10.1021/cr100003s.
(6) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
(7) Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Angew. Chem.,
Int. Ed. 2009, 48, 4381.
(8) Jia, W.; Jiao, N. Org. Lett. 2010, 12, 2000.
10.1021/ol101322k 2010 American Chemical Society
Published on Web 06/21/2010