Organic Letters
Letter
8431−8452. (c) Yun, J. Asian J. Org. Chem. 2013, 2, 1016−1025.
From alkenes: (d) Takahashi, K.; Takagi, J.; Ishiyama, T.; Miyaura, N.
Chem. Lett. 2000, 29, 126−127. (e) Kiesewetter, E. T.; O’Brien, R. V.;
Yu, E. C.; Meek, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2013, 135, 6026−6029. (f) Morrill, C.; Grubbs, R. H. J. Org. Chem.
2003, 68, 6031−6034. (g) Kirai, N.; Iguchi, S.; Ito, T.; Takaya, J.;
Iwasawa, N. Bull. Chem. Soc. Jpn. 2013, 86, 784−799. From epoxides:
(h) Murray, S. A.; Luc, E. C. M.; Meek, S. J. Org. Lett. 2018, 20, 469−
472. From allenes: (i) Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A.
H. Org. Lett. 2013, 15, 1414−1417. From ketones and aldehydes:
(j) Stephens, T. C.; Pattison, G. Org. Lett. 2017, 19, 3498−3501.
(k) Matteson, D. S.; Moody, R. J. Organometallics 1982, 1, 20−28.
(3) Carboalumination reviews: (a) Negishi, E. I. ARKIVOC 2011,
34−53. (b) Normant, J. F.; Alexakis, A. Synthesis 1981, 1981, 841−
870. (c) Negishi, E.; Kondakov, D. Y. Chem. Soc. Rev. 1996, 25, 417.
Seminal publications: (d) Van Horn, D. E.; Negishi, E. J. Am. Chem.
Soc. 1978, 100, 2252−2254. (e) Negishi, E.; Okukado, N.; King, A. O.;
Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc. 1978, 100, 2254−
2256. (f) Negishi, E.; Van Horn, D. E.; Yoshida, T. J. Am. Chem. Soc.
1985, 107, 6639−6647. Mechanistic studies: (g) Yoshida, T.; Negishi,
E. J. Am. Chem. Soc. 1981, 103, 4985−4987. Water-promoted
carboaluminations: (h) Wipf, P.; Lim, S. Angew. Chem., Int. Ed. Engl.
1993, 32, 1068−1071. (i) Wipf, P.; Nunes, R. L.; Ribe, S. Helv. Chim.
Acta 2002, 85, 3478−3488.
(11) (a) Dean, J. A., Ed. Bond Dissociation Energies. In Lange’s
Handbook of Chemistry, 15th ed; McGraw-Hill: New York, 1999; pp
329−330. (b) King, R. B., Crabtree, R. H., Lukehart, C. M., Atwood,
D. A., Scott, R. A., Eds. Bond Energies. In Encyclopedia of Inorganic
(12) Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961−
10963.
(13) Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem., Int. Ed.
2016, 55, 15356−15359.
(14) The additional Al−O bonds formed in the dimerization of i-
PrOAlMe2 may contribute to the exotherm observed. See: Allan, J. F.;
Clegg, W.; Elsegood, M. R. J.; Henderson, K. W.; McKeown, A. E.;
Moran, P. H.; Rakov, I. M. J. Organomet. Chem. 2000, 602, 15.
̌
(15) Duris,
Rodriguez, F.; Ballereau, S.; Gen
2016, 22, 6676−6686.
̌
A.; Daïch, A.; Santos, C.; Fleury, L.; Ausseil, F.;
́
isson, Y.; Berkes, D. Chem. - Eur. J.
̌
(16) Kaminsky, W. Macromol. Chem. Phys. 1996, 197, 3907−3945.
(17) Hieda, Y.; Choshi, T.; Fujioka, H.; Hibino, S. Eur. J. Org. Chem.
2013, 2013, 7391−7401.
(18) Salvaggio, F.; Hodgkinson, J. T.; Carro, L.; Geddis, S. M.;
Galloway, W. R. J. D.; Welch, M.; Spring, D. R. Eur. J. Org. Chem.
2016, 2016, 434−437.
(19) Chen, J. L. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2014, 53,
10992−10996.
(20) It is possible that the excess alkenyl alane intermediate 2 reacts
with the newly formed boronate 3 when i-PrOBpin is added slowly.
Rapid addition of i-PrOBpin diminishes the extent of this side reaction
at the cost of rapid heat evolution, which is controlled by precooling
the reaction mixture to −50 °C.
(4) Miyaura borylation: (a) Ishiyama, T.; Murata, M.; Miyaura, N. J.
Org. Chem. 1995, 60, 7508−7510. Review: (b) Kubota, K.; Iwamoto,
H.; Ito, H. Org. Biomol. Chem. 2017, 15, 285−300.
(5) (a) Organ, M. G.; Bilokin, Y. V.; Bratovanov, S. J. Org. Chem.
2002, 67, 5176−5183. (b) Li, W.; Nelson, D. P.; Jensen, M. S.;
Hoerrner, R. S.; Cai, D.; Larsen, R. D.; Reider, P. J. J. Org. Chem. 2002,
67, 5394−5397.
́
(6) Cu-catalyzed carboboration: (a) Alfaro, R.; Parra, A.; Aleman, J.;
García Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2012, 134, 15165−
15168. (b) Liu, P.; Fukui, Y.; Tian, P.; He, Z.-T.; Sun, C.-Y.; Wu, N.-
Y.; Lin, G.-Q. J. Am. Chem. Soc. 2013, 135, 11700−11703. (c) Yoshida,
H.; Kageyuki, I.; Takaki, K. Org. Lett. 2013, 15, 952−955. (d) Kageyuki,
I.; Yoshida, H.; Takaki, K. Synthesis 2014, 46, 1924−1932. (e) Semba,
K.; Bessho, N.; Fujihara, T.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed.
2014, 53, 9007−9011. (f) Zhou, Y.; You, W.; Smith, K. B.; Brown, M.
K. Angew. Chem., Int. Ed. 2014, 53, 3475−3479. (g) Bidal, Y. D.;
Lazreg, F.; Cazin, C. S. J. ACS Catal. 2014, 4, 1564−1569. (h) Su, W.;
Gong, T.-J.; Lu, X.; Xu, M.-Y.; Yu, C.-G.; Xu, Z.-Y.; Yu, H.-Z.; Xiao, B.;
Fu, Y. Angew. Chem., Int. Ed. 2015, 54, 12957−12961. (i) Kubota, K.;
Iwamoto, H.; Yamamoto, E.; Ito, H. Org. Lett. 2015, 17, 620−623.
(j) Bin, H.-Y.; Wei, X.; Zi, J.; Zuo, Y.-J.; Wang, T.-C.; Zhong, C.-M.
ACS Catal. 2015, 5, 6670−6679. (k) Itoh, T.; Shimizu, Y.; Kanai, M. J.
Am. Chem. Soc. 2016, 138, 7528−7531. (l) Su, W.; Gong, T.-J.; Zhang,
Q.; Zhang, Q.; Xiao, B.; Fu, Y. ACS Catal. 2016, 6, 6417−6421.
(m) Kageyuki, I.; Osaka, I.; Takaki, K.; Yoshida, H. Org. Lett. 2017, 19,
830−833. (n) Mun, B.; Kim, S.; Yoon, H.; Kim, K. H.; Lee, Y. J. Org.
Chem. 2017, 82, 6349−6357.
(7) Other methods include bromoboration of alkynes with BBr3
followed by esterification and Negishi coupling,8 and Ni- or Pd-
catalyzed intramolecular boration of tethered alkynes.9
(8) (a) Wang, C.; Tobrman, T.; Xu, Z.; Negishi, E. Org. Lett. 2009,
11, 4092−4095. (b) Negishi, E. I.; Tobrman, T.; Rao, H.; Xu, S.; Lee,
C. T. Isr. J. Chem. 2010, 50, 696−701.
(9) (a) Yamamoto, A.; Suginome, M. J. Am. Chem. Soc. 2005, 127,
15706−15707. (b) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am.
Chem. Soc. 2003, 125, 6358−6359. (c) Daini, M.; Yamamoto, A.;
Suginome, M. J. Am. Chem. Soc. 2008, 130, 2918−2919.
(10) Using the standard bond energies,11 one can estimate the Al→B
exchange to be endothermic with ΔH298 = + 101 kJ/mol:
D
Org. Lett. XXXX, XXX, XXX−XXX