ACS Medicinal Chemistry Letters
LETTER
sphingoid base to shift itself lower in the pocket to establish new
hydrogen bonds with CD1d/TCR complex (Figure 3b).
Although the computational modeling studies do not provide
conclusive proof, our model offers a view of how 3-deoxy ana-
logue 4 may bind CD1d and present its galactose epitope to the
TCR of NKT cells. Throughout these molecular modeling and
biological studies, the effect of the absence of the 3-hydroxyl
group appears to be compensated by the presence of a hydroxyl
group at the C-4 position. Thus, the 3- and 4-hydroxyl groups
of phytosphingosine are both individually effective at orienting
the glycolipid in CD1d and inducing NKT cells responses,
although the position of the hydroxyl group affects how the
glycolipid binds to CD1d.
In summary, we have prepared the R-GalCer analogue lacking
the 3-hydroxyl group on the phytosphingosine (3-deoxy-
R-GalCer, 4) to ascertain the individual impacts of the 3- and
4-hydroxyl groups on NKT cell activation. Contrary to the pre-
vious perception, 3-deoxy-R-GalCer was found to be similarly
effective at inducing NKT cells responses as both R-GalCer and
4-deoxy-R-GalCer. Together with our docking studies, this result
suggests that the 4-hydroxyl group of R-GalCer is as important as
the 3-hydroxyl group and that the two hydroxyl groups could
play both individual and cooperative roles in orienting the
glycolipid into the proper position in CD1d to be recognized
by the TCR of NKT cells. We believe that 3-deoxy-R-GalCer
represents an important new tool for improving the under-
standing of glycolipidꢀCD1d interactions and the NKT re-
sponse. Additionally, it could provide guidance regarding the
development of nonstereotypical immunostimulating agents that
are structurally distinct from the typical phytosphingosine-con-
taining galactosylceramide.
(3) Balato, A.; Unutmaz, D.; Gaspari, A. A. Natural killer T cells: an
unconventional T-cell subset with diverse effector and regulatory
functions. J. Invest. Dermatol. 2009, 129, 1628–1642.
(4) Cerundolo, V.; Silk, J. D.; Masri, S. H.; Salio, M. Harnessing
invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 2009,
9, 28–38.
(5) Banchet-Cadeddu, A.; Hꢀenon, E.; Dauchez, M.; Renault, J.-H.;
Monneaux, F.; Haudrechy, A. The stimulating adventure of KRN 7000.
Org. Biomol. Chem. 2011, 9, 3080–3104.
(6) Mori, K.; Tashiro, T. Sphingolipids and glycosphingolipids—
Their syntheses and bioactivities. Heterocycles 2011, 83, 951–1003.
(7) Kronenberg, M. Toward an understanding of NKT cell biology:
Progress and Paradoxes. Annu. Rev. Immunol. 2005, 23, 877–900.
(8) Kaer, L. V. R-Galactosylceramide therapy for autoimmune
diseases: Prospects and obstacles. Nat. Rev. Immunol. 2005, 5, 31–42.
(9) Murphy, N.; Zhu, X.; Schmidt, R. R. R-Galactosylceramides and
analogues—Important immunomodulators for use as vaccine adjuvants.
Carbohydr. Chem. 2010, 36, 64–100.
(10) Zajonc, D. M.; Cantu, C., III; Mattner, J.; Zhou, D.; Savage,
P. B.; Bendelac, A.; Wilson, I. A.; Teyton, L. Structure and function of a
potent agonist for the semi-invariant natural killer T cell receptor. Nat.
Immunol. 2005, 6, 810–818.
(11) Koch, M.; Stronge, V. S.; Shepherd, D.; Gadola, S. D.; Mathew,
B.; Ritter, G.; Fersht, A. R.; Besra, G. S.; Schmidt, R. R.; Jones, E. Y.;
Cerundolo, V. The crystal structure of human CD1d with and without
R-galactosylceramide. Nat. Immunol. 2005, 6, 819–826.
(12) Borg, N. A.; Wun, K. S.; Kjer-Nielsen, L.; Wilce, M. C. J.;
Pellicci, D. G.; Koh, R.; Besra, G. S.; Bharadwaj, M.; Godfrey, D. I.;
McCluskey, J.; Rossjohn, J. CD1d-lipid-antigen recognition by the semi-
invariant NKT T-cell receptor. Nature 2007, 448, 44–49.
(13) Pellicci, D. G.; Patel, O.; Kjer-Nielsen, L.; Pang, S. S.; Sullivan,
L. C.; Kyparissoudis, K.; Brooks, A. G.; Reid, H. H.; Gras, S.; Lucet, I. S.;
Koh, R.; Smyth, M. J.; Mallevaey, T.; Matsuda, J. L.; Gapin, L.;
McCluskey, J.; Godfrey, D. I.; Rossjohn, J. Differential Recognition of
CD1d-R-GalactogylCeramide by the Vβ8.2 and Vβ7 semi-invariant
NKT T cell receptors. Immunity 2009, 31, 47–59.
(14) Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C.,
III; Teyton, L.; Bendelac, A.; Savage, P. B. Effects of lipid chain lengths in
R-galactosylceramides on cytokine release by natural killer T cells. J. Am.
Chem. Soc. 2004, 126, 13602–13603.
(15) Tsuji, M. Glycolipids and phospholipids as natural CD1d-
binding NKT cell ligands. Cell. Mol. Life Sci. 2006, 63, 1889–1898.
(16) Savage, P. B.; Teyton, L.; Bendelac, A. Glycolipids for natural
killer T cells. Chem. Soc. Rev. 2006, 35, 771–779.
(17) Wu, D.; Fujio, M.; Wong, C.-H. Glycolipids as immunostimu-
lating agents. Bioorg. Med. Chem. 2008, 16, 1073–1083.
(18) Nadas, J.; Li, C.; Wang, P. G. Computaional structure activity
relationship studies on the CD1d/glycolipid/TCR complex using
AMBER and AUTODOCK. J. Chem. Inf. Model. 2009, 49, 410–423.
(19) Lac^one, V.; Hunault, J.; Pipelier, M.; Blot, V.; Lecourt, T.;
Rocher, J.; Turcot-Dubois, A.-L.; Marionneau, S.; Douillard, J.-Y.;
Clꢀement, M.; Le Pendu, J.; Bonneville, M.; Micouin, L.; Dubreuil, D.
Focus on the controversial activation of human iNKT cells by 4-deoxy
analogue of KRN7000. J. Med. Chem. 2009, 52, 4960–4963.
(20) Ndonye, R. M.; Izmirian, D. P.; Dunn, M. F.; Yu, K. O. A.;
Porcelli, S. A.; Khurana, A.; Kronenberg, M.; Richardson, S. K.; Howell,
A. R. Synthesis and evaluation of sphinganine analogues of KRN7000
and OCH. J. Org. Chem. 2005, 70, 10260–10270.
(21) Sidobre, S.; Hammond, K. J. L.; Bꢀenazet-Sidobre, L.; Maltsev,
S. D.; Richardson, S. K.; Ndonye, R. M.; Howell, A. R.; Sakai, T.; Besra,
G. S.; Porcelli, S. A.; Kronenberg, M. The T cell antigen receptor
expressed by VR14i NKT cells has a unique mode of glycosphingolipid
antigen recognition. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12254–12259.
(22) Miyamoto, K.; Miyake, S.; Yamamura, T. A synthetic glycolipid
prevents autoimmune encephalomyelitis by inducing TH2 bias of natural
killer T cells. Nature 2001, 413, 531–534.
’ ASSOCIATED CONTENT
S
Supporting Information. Figures showing the docking
b
scores of compounds 1, 2, and 4 (Figure S1), the hydrogen-
bonding modes of compounds 2 and 4 (Figure S2), and the
docking conformation of compound 2 superimposed with R-
GalCer (1) (Figure S3), detailed information on the experi-
mental procedures, analytical data for all new compounds, and
copies of 1H and 13C NMR spectra for selected compounds. This
acs.org.
’ AUTHOR INFORMATION
Corresponding Author
*Tel: 82-2-880-2487. Fax: 82-2-888-0649. E-mail: pennkim@
snu.ac.kr.
Funding Sources
This work was supported by a National Research Foundation of
Korea grant funded by the Korea government (MEST) (Grant
20100027763).
’ REFERENCES
(1) Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa,
E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. Structure-
activity relationship of R-galactosylceramides against B16-bearing mice.
J. Med. Chem. 1995, 38, 2176–2187.
(2) Tupin, E.; Kinjo, Y.; Kronenberg, M. The unique role of natural
killer T cells in the response to microorganisms. Nat. Rev. Microbiol.
2007, 5, 405–417.
(23) Wu, D.; Zajonc, D. M.; Fujio, M.; Sullivan, B. A.; Kinjo, Y.;
Kronenberg, M.; Wilson, I. A.; Wong, C.-H. Design of natural killer T
547
dx.doi.org/10.1021/ml2000802 |ACS Med. Chem. Lett. 2011, 2, 544–548