762 Chem. Mater. 2011, 23, 762–764
DOI:10.1021/cm100984z
A Purely Organic Paramagnetic Metal, K-β00-(BEDT-
TTF)2(PO-CONHC2H4SO3), Where PO = 2,2,5,5-
Tetramethyl-3-pyrrolin-1-oxyl Free Radical†
ducing aminoxyl radicals (R2NO ), but as of yet, no other
3
group has prepared a metallic salt.6 Similarly, we pre-
pared five BEDT-TTF salts containing the TEMPO
radical (see scheme) and all are semiconductors.7a-e
We then reported the first metallic salt (albeit only down
to 210 K) containing the smaller PROXYL radical, β00-
(BEDT-TTF)2(PROXYL-NHCOCH2SO3).7f We then pre-
pared an anion with the even smaller PO (2,2,5,5-tetra-
methyl-3-pyrrolin-1-oxyl) radical, PO-NHCOCH2SO3- (1),
but the resultant BEDT-TTF salt had an R-type packing
motif and was a semiconductor.7g In this communication, we
report the larger anion PO-NHCOCH2CH2SO3- (2) which
includes the same PO radical but with the longer ethylene
group instead of the methylene group of anion 1. This new
anion 2 has provided a BEDT-TTF salt, the structure and
properties of which are reported.
Hiroki Akutsu,*,‡ Shinji Yamashita,‡ Jun-ichi Yamada,‡
Shin’ichi Nakatsuji,‡ Yuko Hosokoshi,§ and
Scott S. Turner#
‡Graduate School of Material Science, University of Hyogo,
3-2-1, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297,
Japan, §Department of Physical Science, Graduate School
of Science, Osaka Prefecture University, 1-1 Gakuen-cho,
Naka-ku, Sakai, Osaka 599-8531, Japan, and
#Chemical Sciences, University of Surrey, Guildford,
Surry GU2 7XH, United Kingdom
Received April 9, 2010
Revised Manuscript Received May 10, 2010
Organic conducting salts, based on bis(ethylenedithio)-
tetrathiafulvalene (BEDT-TTF), have been prepared with
a wide variety of counteranions.1 The transport pro-
perties range from insulating through semiconducting to
metallic and superconducting and are dependent in part on
the packing of the BEDT-TTF molecules. The packing
motifs have been classified into several types designated by
the labels R, β, β00, κ, λ, θ, etc.1,2 Evidently, the donor
arrangements play a crucial role in determining the trans-
port properties, because κ- and β-type salts usually have
metallic properties, R-type salts are usually semiconduc-
tors, β00-typesaltsareweakmetalsorsemimetals,and soon.
After the discovery of the BEDT-TTF-based paramag-
The sulfonic acid H2 was prepared by reacting 3-carboxy-
2,2,5,5-tetramethylpyrrolin-1-oxyl (PO-COOH, 100 mg,
0.54 mmol) with 2-aminoethanesulfonic acid (H2NCH2-
CH2SO3H, 70 mg, 0.65 mmol) in the presence of DCC
(H11C6-NdCdN-C6H11, 150 mg, 0.65 mmol) and DMAP
(4-(CH3)2N-pyridine, 180 mg, 1.30 mmol) in 30 mL of CH2Cl2
at room temperature with stirring over three days. Metathesis
with PPh4Br gave PPh42 as yellow crystals, which were
recrystallized from acetone (yield 45%). Single-crystal X-ray
diffraction data for PPh42 were collected using a Quan-
tum CCD area detector and a Rigaku AFC-7R diffracto-
meter.8 The asymmetric unit contains one PPh4 cation
netic superconductor, β00-(BEDT-TTF)4[(H3O)Fe(C2O4)3]
3
PhCN,3 charge-transfer (CT) salts with transition metal
anions have attracted great interest.4 In particular, the
λ-(BETS)2FeCl4 family have unique electromagnetic pro-
perties that emerge from an interaction between localized
and itinerant electrons.5 However, the interaction is small
(<10 K), probably because there is no direct overlap
between the pπ orbitals of the donor molecule and the d
orbitals of the transition metal. To make CT salts that
have larger interactions, one strategy has been to use a
different source of unpaired electron density, organic free
radicals, which can directly overlap with the donor pπ
orbitals. To this end, many researchers have tried intro-
(6) Sugano, T.; Fukasaka, T.; Kinoshita, M. Synth. Met. 1991, 41-43,
3281. Fujiwara, E.; Aonuma, S.; Fujiwara, H.; Sugimoto, T.; Misaki, Y.
Chem. Lett. 2008, 37, 84. Otsubo, S.; Cui, H.; Lee, H. -J.; Fujiwara, H.;
Takahashi, K.; Okano, Y.; Kobayashi, H. Chem. Lett. 2006, 35, 130.
Matsushita, M. M.; Kawakami, H.; Sugawara, T.; Ogata, M. Phys. Rev.
B 2008, 77, 195208. Sugimoto, T.; Yamaga, S.; Nakai, M.; Ohmori, K.;
Tsujii, M.; Nakatsuji, H.; Hosoito, H. Chem. Lett. 1993, 1361.
Hutchison, K. A.; Srdanov, G.; Menon, R.; Gabriel, J. -C. P.; Knight,
B.; Wudl, F. J. Am. Chem. Soc. 1996, 118, 13081. Nakatsuji, S.; Anzai,
H. J. Mater. Chem. 1997, 7, 2161. Nakamura, Y.; Koga, N.; Iwamura,
H. Chem. Lett. 1991, 69. Mukai, K.; Senba, N.; Hatanaka, T.;
Minakuchi, H.; Ohara, K.; Taniguchi, M.; Misaki, Y.; Hosokoshi, Y.;
Inoue, K.; Azuma, N. Inorg. Chem. 2004, 43, 566. Aonuma, S.;
Casellas, H.; Faulmann, C.; Garreau de Bonneval, B.; Malfant, I.;
Cassoux, P.; Lacroix, P. G.; Hosokoshi, Y.; Inoue, K. J. Mater. Chem.
2001, 11, 337.
(7) (a) Akutsu, H.; Yamada, J.; Nakatsuji, S. Chem. Lett. 2003, 32,
1118. (b) Akutsu, H.; Yamada, J.; Nakatsuji, S. Synth. Met. 2005, 152,
377. (c) Akutsu, H.; Masaki, K.; Mori, K.; Yamada, J.; Nakatsuji, S.
Polyhedron 2005, 24, 2126. (d) Yamashita, A.; Akutsu, H.; Yamada, J.;
Nakatsuji, S. Polyhedron 2005, 24, 2796. (e) Akutsu, H.; Yamada, J.;
Nakatsuji, S.; Turner, S. S. Solid State Commun. 2006, 140, 256.
(f) Akutsu, H.; Sato, K.; Yamashita, S.; Yamada, J.; Nakatsuji, S.;
Turner, S. S. J. Mater. Chem. 2008, 18, 3313. (g) Akutsu, H.;
Yamashita, S.; Yamada, J.; Nakatsuji, S.; Turner, S. S. Chem. Lett.
2008, 37, 882.
† Accepted as part of the “Special Issue on π-Functional Materials”.
*Corresponding author.
(1) Williams, J. M.; Ferraro, J. R.; Thorn, R. J.; Carlson, K. D. ;
Geiser, U.; Wang, H. H.; Kini, A. M.; Whangbo, M.-H. Organic
Superconductor (Including Fullerenes) Synthesis, Structure, Proper-
ties and Theory; Prentice-Hall: New York, 1992.
(2) Mori, T.; Mori, H.; Tanaka, S. Bull. Chem. Soc. Jpn. 1999, 72, 179.
(3) Kurmoo, M.; Graham, A. W.; Day, P.; Coles, S. J.; Hursthouse,
M. B.; Caulfield, J. L.; Singleton, J.; Pratt, F. L.; Hayes, W.;
Ducasse, L.; Guionneau, P. J. Am. Chem. Soc. 1995, 117, 12209.
(4) Coronado, E.; Day, P. Chem. Rev. 2004, 104, 5419. Enoki, T.;
Miyazaki, A. ibid 2004, 104, 5449.
(5) Kobayashi, H.; Cui, H; Kobayashi, A. Chem. Rev. 2004, 104, 5265.
r
pubs.acs.org/cm
Published on Web 06/02/2010
2010 American Chemical Society