2874 Organometallics 2010, 29, 2874–2881
DOI: 10.1021/om100103u
Bioinspired Catalytic Conjugate Additions of Thiophenols to
r,β-Enones by a Disubstituted Benzoate-Bridged Nickel Mimic
for the Active Site of Urease
Way-Zen Lee,*,† Huan-Sheng Tseng,† Tzu-Li Wang,† Hui-Lien Tsai,*,‡ and
Ting-Shen Kuo§
†Department of Chemistry, National Taiwan Normal University, Taipei 11650, Taiwan, ‡Department of
Chemistry, National Cheng Kung University, Tainan 70101, Taiwan, and Instrumentation Center,
§
Department of Chemistry, National Taiwan Normal University, Taipei 11650, Taiwan
Received February 10, 2010
A disubstituted benzoate polydentate ligand, 2,6-bis[bis(pyridinyl-2-methyl)aminoethoxyl]benzo-
ate (HL), was prepared to synthesize nickel mimics for the active site of urease. Reaction of the
deprotonated L- with Ni(ClO4)2 6H2O afforded a dinickel complex, [LNi2(CH3CN)(THF)](ClO4)3
(1), characterized by UV/vis spectroscopy and X-ray crystallography. Addition of urea to an
acetonitrile solution of 1 afforded a dinickel urea adduct, [LNi2(urea)2](ClO4)3 2CH3CN (2), which
3
3
1
was structurally and spectroscopically characterized. H NMR and ESI-MS spectra of 2 both
evidenced that urea molecules remained coordinated to the nickel centers of 2 in solution. With the
inspiration of urea coordination to the nickel centers of 1, the conjugate additions of thiophenols to
R,β-enones catalyzed by complex 1 were examined and found to proceed in good yields. In contrast,
the same catalytic reaction by Ni(ClO4)2 6H2O and HL was far less effective. Also, addition of
3
NaOAc or NaOAcPh2 to an acetonitrile solution of 1 gave tetranuclear nickel complexes, [LNi2-
(μ-OAc)]2(ClO4)4 3H2O (3) and [LNi2(μ-OAcPh2)]2(ClO4)4 5CH3CN 2THF (4), and their molec-
3
3
3
ular structures determined by X-ray diffraction can be described as dimers of dimers. Each dinickel
core of 3 and 4 closely mimics the active site of urease. The magnetic data of 1, 3, and 4 exhibited a
very weak antiferromagnetic coupling (J = -0.72 cm-1 for 1, -0.65 cm-1 for 3 and 4) between two
metal centers in the dinickel core.
Urease, which can catalyze the hydrolysis of urea, exists in
a variety of bacteria, fungi, and higher plants1 and permits
the organism to consume external or internal generated urea
as a nitrogen source.2 Hydrolysis of urea catalyzed by the
dinickel active site of urease produces CO2 and 2 equiv of
NH3.1 The degradation rate of urea by the enzyme is 1014
times faster than its spontaneous decomposition rate.3 Due
to this fast catalysis, soil bacterial urease can rapidly hydro-
lyze fertilizer urea to unproductive volatilized ammonia and
cause the damage of plants.2 Also, the existence of urease in
Helicobacter pylori, which causes gastric inflammation and
peptic ulcer disease, allows the bacteria to survive in the
gastric mucosa of patients at acidic pH.4 Two enzymatic
mechanisms of urease have been proposed,5,6 and the first
intermediate in both mechanisms is the urea-bound enzyme,
in which urea is proposed to coordinate to the nickel center in
the active site of urease. Many reported protein structures of
urease with high resolution7 reveal that two nickel ions exist
*To whom correspondence should be addressed. E-mail: wzlee@
ntnu.edu.tw.
(1) Hausinger, R. P. Biochemistry of Nickel; Plenum Press: New York,
1993; Chapter 3.
(2) (a) Mobley, H. L.T.; Hausinger, R. P. Microbiol. Rev. 1989, 53,
85–108. (b) Zonia, L. E.; Stebbins, N. E.; Polacco, J. C. Plant Physiol. 1995,
107, 1097–1103.
(3) Blakeley, R. L.; Treston, A.; Andrews, R. K.; Zerner, B. J. Am.
Chem. Soc. 1982, 104, 612–614.
(4) Mobley, H. L. T.; Island, M. D.; Hausinger, R. P. Microbiol. Rev.
1995, 59, 415–480.
˚
in the active site of the enzyme with a separation of 3.5 A. The
(5) (a) Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem.
Res. 1997, 30, 330–337. (b) Benini, S.; Ciurli, S.; Rypniewski, W. R.; Wilson,
K. S.; Mangani, S. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1998, 54,
409–412. (c) Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Miletti, S.; Ciurli,
S.; Mangani, S. Struct. Fold. Des. 1999, 7, 205–216. (d) Benini, S.;
Rypniewski, W. R.; Wilson, K. S.; Ciurli, S.; Mangani, S. J. Biol. Inorg.
Chem. 2001, 6, 778–790. (e) Musiani, F.; Arnolfi, E.; Casadio, R.; Ciurli, S.
J. Biol. Inorg. Chem. 2001, 6, 300–314. (f) Pearson, M. A.; Michel, L. O.;
Hausinger, R. P.; Karplus, P. A. Biochemistry 1997, 36, 8164–8172. (g)
Pearson, M. A.; Schaller, R. A.; Michel, L. O.; Karplus, P. A.; Hausinger, R. P.
Biochemistry 1998, 37, 6214–6220. (h) Todd, M. J.; Hausinger, R. P.
Biochemistry 2000, 39, 5389–5396. (i) Pearson, M. A.; Prk, I.-S.; Schaller,
R. A.; Michel, L. O.; Karplus, P. A.; Hausinger, R. P. Biochemistry 2000, 39,
8575–8584.
(6) (a) Fearon, W. R. Biochem. J. 1923, 17, 84–93. (b) Mack, E.; Villars,
D. S. J. Am. Chem. Soc. 1923, 45, 505–510. (c) Meyer, F.; Kaifer, E.;
Kircher, P.; Heinze, K.; Pritzkow, H. Chem. Eur. J. 1999, 5, 1617–1630. (d)
Barrios, A. M.; Lippard, S. J. J. Am. Chem. Soc. 2000, 122, 9172–9177. (e)
Estiu, G.; Merz, K. M., Jr. J. Am. Chem. Soc. 2004, 126, 11832–11842.
(7) (a) Jabri, E.; Carr, M. B.; Hausinger, R. P.; Karplus, P. A. Science
1995, 268, 998–1004. (b) Park, I.-S.; Michel, L. O.; Pearson, M. A.; Jabri, E.;
Karplus, P. A.; Wang, S.; Dong, J.; Scott, R. A.; Koehler, B. P. J. Biol. Chem.
1996, 271, 18632–18637. (c) Pearson, M. A.; Michel, L. O.; Hausinger, R. P.;
Karplus, P. A. Biochemistry 1997, 36, 8164–8172. (d) Benini, S.; Rypniewski,
W. R.; Wilson, K. S.; Miletti, S.; Ciurli, S.; Mangani, S. Structure 1999, 7, 205–
216. (e) Ha, N. C.; Oh, S. T.; Sung, J. Y.; Cha, K. A.; Lee, M. H.; Oh, B. H. Nat.
Struct. Biol. 2001, 8, 505–509.
r
pubs.acs.org/Organometallics
Published on Web 06/08/2010
2010 American Chemical Society