through strong intermolecular interaction between trans-
Me-SH adopting a planar conformation.13 Under UV light
irradiation the estimated trans-to-cis conversion was found to
be ca. 51 Æ 3%. Fast thermal cis-to-trans back isomerization
proceeded, especially, in the early stages of dark incubation for
30 min (Fig. 3). Considering that the occupied areas are
enlarged up to 0.55 nm2 for Et-SH and 0.50 nm2 for Me-SH
(estimated by the X-ray crystal analysis14 and a CPK model)
from 0.24 nm2 for the unsubstituted azobenzene,4,15 and that a
critical free volume required for trans-to-cis photoisomeri-
zation in densely packed monolayers is 0.45 nm2 per alkyl-
azobenzene unit,15b it seems likely that both the low trans-to-cis
conversion and fast thermal cis-to-trans isomerization of
Me-SH SAMs is not primarily due to a lack of free volume,
but rather due to molecular structure related to favorable
intermolecular interaction between the planar trans form of
Me-SH.
2 (a) R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni,
E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe,
Nature, 1997, 388, 431–432; (b) K. Ichimura, S. K. Oh and
M. Nakagawa, Science, 2000, 288, 1624–1626; (c) M. J. Cook,
A. M. Nygard, Z. X. Wang and D. A. Russell, Chem. Commun.,
2002, 1056–1057; (d) Y. L. Yu, M. Nakano and T. Ikeda, Nature,
2003, 425, 145–145; (e) S. Sortino, S. Petralia, S. Conoci and S. Di
Bella, J. Mater. Chem., 2004, 14, 811–813; (f) X. J. Feng, L. Feng,
M. H. Jin, J. Zhai, L. Jiang and D. B. Zhu, J. Am. Chem. Soc.,
2004, 126, 62–63; (g) M. Ito, T. X. Wei, P. L. Chen, H. Akiyama,
M. Matsumoto, K. Tamada and Y. Yamamoto, J. Mater. Chem.,
2005, 15, 478–483; (h) H. S. Lim, J. T. Han, D. Kwak, M. H. Jin
and K. Cho, J. Am. Chem. Soc., 2006, 128, 14458–14459;
(i) H. Nishioka, X. G. Liang, H. Kashida and H. Asanuma, Chem.
Commun., 2007, 4354–4356; (j) H. Asanuma, X. Liang,
H. Nishioka, D. Matsunaga, M. Liu and M. Komiyama, Nat.
Protoc., 2007, 2, 203–212; (k) G. Pace, V. Ferri, C. Grave,
M. Elbing, C. von Hanisch, M. Zharnikov, M. Mayor,
M. A. Rampi and P. Samori, Proc. Natl. Acad. Sci. U. S. A.,
2007, 104, 9937–9942; (l) V. Ferri, M. Elbing, G. Pace,
M. D. Dickey, M. Zharnikov, P. Samori, M. Mayor and
M. A. Rampi, Angew. Chem., Int. Ed., 2008, 47, 3407–3409;
(m) J. M. Mativetsky, G. Pace, M. Elbing, M. A. Rampi,
M. Mayor and P. Samori, J. Am. Chem. Soc., 2008, 130,
9192–9193.
3 (a) C. S. Paik and H. Morawetz, Macromolecules, 1972, 5, 171;
(b) E. V. Brown and G. R. Granneman, J. Am. Chem. Soc., 1975,
97, 621; (c) J. M. Nerbonne and R. G. Weiss, J. Am. Chem. Soc.,
1978, 100, 5953; (d) Y. Tada, T. Morita, J. Umemura, M. Iwamoto
and S. Kimura, Polym. J., 2005, 37, 599–607.
4 R. Wang, T. Iyoda, L. Jiang, D. A. Tryk, K. Hashimoto and
A. Fujishima, J. Electroanal. Chem., 1997, 438, 213–219.
5 (a) S. D. Evans, S. R. Johnson, H. Ringsdorf, L. M. Williams and
H. Wolf, Langmuir, 1998, 14, 6436–6440; (b) K. Tamada,
J. Nagasawa, F. Nakanishi, K. Abe, T. Ishida, M. Hara and
W. Knoll, Langmuir, 1998, 14, 3264–3271.
A significant variation in lmax from 368 nm for Me-SH to
354 nm for Et-SH in solution may be closely related to the
steric effect arising from the substitution of two ethyl groups at
the ortho positions with respect to the azo group. It is known
that unsubstituted trans-azobenzene adopts a planar confor-
mation, and that methyl substituents at the meta positions
have little influence on the planar structure of azobenzene.1,13
In sharp contrast, our X-ray crystal structure analysis revealed
that the substitution of two ethyl groups at the ortho positions
leads to a large distortion of the phenyl ring from coplanarity
(C–C–NQN dihedral angle is 156114). Consequently, strong
intermolecular interaction between azobenzene aromatic rings
is suppressed and free volume is efficiently procured in Et-SH
monolayers. Furthermore, two ethyl groups at the ortho
positions would restrict large-scale distortion (through either
the inversion mechanism or the rotation mechanism) of the
azo group for thermal cis-to-trans isomerization,1a,2i,10 thus
resulting in stability of the cis state.
6 (a) K. Tamada, H. Akiyama and T. X. Wei, Langmuir, 2002, 18,
5239–5246; (b) K. Tamada, H. Akiyama, T. X. Wei and S. A. Kim,
Langmuir, 2003, 19, 2306–2312; (c) L. F. N. Ah Qune,
H. Akiyama, T. Nagahiro, K. Tamada and A. T. S. Wee, Appl.
Phys. Lett., 2008, 93, 083109.
7 (a) S. Yasuda, T. Nakamura, M. Matsumoto and H. Shigekawa,
J. Am. Chem. Soc., 2003, 125, 16430–16433; (b) A. S. Kumar,
T. Ye, T. Takami, B. C. Yu, A. K. Flatt, J. M. Tour and
P. S. Weiss, Nano Lett., 2008, 8, 1644–1648.
In conclusion, we have reported that the ortho-diethylated
azobenzene molecule exhibits excellent reversible photoswitching
of its molecular conformation as well as the long-lived cis state
on gold surfaces. Not only is free volume required for photo-
isomerization but also a suitable design for the azobenzene
molecules based on (1) intermolecular interactions and (2) the
lifetime of the cis form is an important factor in controlling the
trans-to-cis photoisomerizability and the stabililty of the cis
state on a solid surface. Our current work provides a strategy
for developing new types of photoreactive surfaces potentially
applicable to optical data storage and photoswitching devices.
8 T. Ishida, S. Yamamoto, W. Mizutani, M. Motomatsu,
H. Tokumoto, H. Hokari, H. Azehara and M. Fujihira, Langmuir,
1997, 13, 3261–3265.
9 M. Han and K. Ichimura, Macromolecules, 2001, 34, 82–89.
10 (a) J. P. Ortruba III and R. G. Weiss, J. Org. Chem., 1983, 48,
3448–3453; (b) N. J. Bunce, G. Ferguson, C. L. Forber and
G. J. Stachnyk, J. Org. Chem., 1987, 52, 394–398.
11 (a) D. G. Castner, K. Hinds and D. W. Grainger, Langmuir, 1996,
12, 5083–5086; (b) K. Heister, H.-T. Rong, M. Buck,
M. Zharnikov, M. GrunzeL and S. O. Johansson, J. Phys. Chem. B,
2001, 105, 6888–6894.
12 M. Onoue, M. Han, E. Ito and M. Hara, Surf. Sci., 2006, 600,
3999–4003.
13 (a) E. J. Gabe, Y. Wang, L. R. C. Barclay and J. M. Dust, Acta
Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1981, 37,
978–979; (b) C. Ruslim and K. Ichimura, J. Mater. Chem., 1999, 9,
673–681.
Notes and references
1 (a) H. Rau, Photochromism: Molecules and Systems, ed. H. Durr
and
14 M. Han, D. Hashizume and M. Hara, Acta Crystallogr., Sect. E:
Struct. Rep. Online, 2006, 62, o3001–O3003.
¨
1990;
H.
Bouas-Laurent,
Elsevier,
Amsterdam,
(b) Photoreactive Organic Thin Films, ed. Z. Sekkat and W. Knoll,
Academic Press, Elsevier Science, USA, 2002; (c) K. Ichimura,
Chem. Rev., 2000, 100, 1847–1873; (d) A. Natansohn and
P. Rochon, Chem. Rev., 2002, 102, 4139–4175.
15 (a) H. Wolf, H. Ringsdorf, E. Delamarche, T. Takami, H. Kang,
B. Michel, C. Gerber, M. Jaschke, H. J. Butt and E. Bamberg,
J. Phys. Chem., 1995, 99, 7102–7107; (b) M. Nakagawa, R. Watase
and K. Ichimura, Chem. Lett., 1999, 1209–1210.
ꢀc
This journal is The Royal Society of Chemistry 2010
3600 | Chem. Commun., 2010, 46, 3598–3600