C O M M U N I C A T I O N S
Table 2. Synthesis of 3 from 1 and 2a (entry, product, yield)a b
,
carbamoylchloroiridium(III) intermediate A.14 Next, an intramolecular
cyclization (step 2) affords five-membered iridacycle B.15 The relevant
complex 4 was isolated with the aid of PPh3 coordination in eq 2. The
cyclization must be electrophilic, since 3wa was preferentially obtained
over 3wa′ in eq 3. The construction of the iridacycle B would play a
crucial role in suppressing the decarbonylation. Subsequent insertion
of 2 (step 3) followed by reductive elimination (step 4) affords the
2-quinolone and regenerates the iridium(I) species.
In conclusion, 2-quinolones have been successfully obtained by
iridium-catalyzed annulation of N-arylcarbamoyl chlorides (1) with
internal alkynes (2). It is likely that iridacycle B is a key
intermediate in the catalytic reaction. Further studies of the reaction
mechanism and application of the catalysis are now in progress.
Acknowledgment. This work was supported by a Grant-in-Aid
for Scientific Research on Priority Areas from the Ministry of
Education, Culture, Sports, Science and Technology, Japan. T.I. is
grateful for a Research Fellowship for Young Scientists from JSPS.
a Conditions: 1 (0.50 mmol), 2a (1.0 mmol), [IrCl(cod)]2 (0.0125
mmol, 2.5 mol %), and cod (0.15 mmol, 30 mol %) in refluxing
o-xylene (1.0 mL) for 20 h. b Isolated yields. c [IrCl(cod)]2 (0.025 mmol,
5.0 mol %). d For 36 h. e 1s (0.25 mmol), 2a (1.0 mmol), [IrCl(cod)]2
(0.0125 mmol, 5.0 mol %), cod (0.15 mmol, 60 mol %). f For 48 h.
Supporting Information Available: Experimental procedures,
characterization of the products, and crystallographic data (CIF). This
References
Scheme 1. Plausible Reaction Mechanism
(1) (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles; Wiley-VCH:
Weinheim, Germany, 2003. (b) Costero, A. M. AdV. Heterocycl. Chem.
1993, 58, 171.
(2) For selected examples, see: (a) Guimond, N.; Gouliaras, C.; Fagnou, K.
J. Am. Chem. Soc. 2010, 132, 6908. (b) Perreault, S.; Rovis, T. Chem.
Soc. ReV. 2009, 38, 3149. (c) Satoh, T.; Ueura, K.; Miura, M. Pure Appl.
Chem. 2008, 80, 1127.
(3) (a) Yoshino, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2009,
131, 7494. (b) Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc.
2008, 130, 17226. (c) Miura, T.; Yamauchi, M.; Murakami, M. Org. Lett.
2008, 10, 3085. (d) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem.
Soc. 2008, 130, 6058.
(4) For recent reviews of carbonylative annulations using CO as a carbonyl
source, see: (a) Chatani, N. Chem. Rec. 2008, 8, 201. (b) Zeni, G.; Larock,
R. C. Chem. ReV. 2006, 106, 4644. (c) Vasapollo, G.; Mele, G. Curr. Org.
Chem. 2006, 10, 1397. (d) Vizer, S. A.; Yerzhanov, K. B.; Al Quntar,
A. A. A.; Dembitsky, V. M. Tetrahedron 2004, 60, 5499.
(5) For recent examples, see: (a) Krishnamoorthy, R.; Lam, S. Q.; Manley,
C. M.; Herr, R. J. J. Org. Chem. 2010, 75, 1251. (b) Kochi, T.; Urano, S.;
Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009,
131, 2792. (c) Yasui, Y.; Takemoto, Y. Chem. Rec. 2008, 8, 386, and
references cited therein.
(6) The 2-quinolone core is a ubiquitous subunit in many alkaloids with various
biological activities, and 2-quinolones serve as valuable intermediates in
organic synthesis. For examples, see: (a) Jayashree, B. S.; Thomas, S.;
Nayak, Y. Med. Chem. Res. 2010, 19, 193. (b) Godard, A.; Fourquez, J. M.;
Tamion, R.; Marsais, F.; Que´guiner, G. Synlett 1994, 235.
(7) Recently, the synthesis of 2-quinolones by intramolecular cyclization of
carbamoyl chlorides bearing an alkene has been reported. See: Yasui, Y.;
Kakinokihara, I.; Takeda, H.; Takemoto, Y. Synthesis 2009, 3989.
(8) For selected syntheses and functionalizations of 2-quinolones, see: (a) Tang,
D.-J.; Tang, B.-X.; Li, J.-H. J. Org. Chem. 2009, 74, 6749. (b) Kobayashi,
Y.; Harayama, T. Org. Lett. 2009, 11, 1603. (c) Tadd, A. C.; Matsuno, A.;
Fielding, M. R.; Willis, M. C. Org. Lett. 2009, 11, 583. (d) Wang, Z.; Fan,
R.; Wu, J. AdV. Synth. Catal. 2007, 349, 1943. (e) Vicente, J.; Abad, J.-
A.; Lo´pez-Serrano, J.; Jones, P. G.; Na´jera, C.; Botella-Segura, L.
Organometallics 2005, 24, 5044. (f) Kadnikov, D. V.; Larock, R. C. J.
Org. Chem. 2004, 69, 6772. (g) Kadnikov, D. V.; Larock, R. C. J.
Organomet. Chem. 2003, 687, 425.
in 64% yield (eq 1). In eq 1, however, no iridium complexes were
identified. Therefore, instead of 2a, PPh3 (P/Ir ) 2) was added into
the reaction mixture (eq 2). As a result, iridium(III) metallacycle
complex 4 was isolated in 69% yield, and the structure of 4 was
confirmed by X-ray diffraction.12 Iridacycle 4 did not provide 3aa
either catalytically or in a stoichiometric reaction with 2a in
refluxing toluene or xylene. As for the cyclization, 1w having both
the 3-methoxyphenyl and 3-trifluoromethylphenyl moieties was
reacted with 2a (eq 3). The cyclization occurred preferentially at
the more-electron-rich phenyl ring (3wa/3wa′ ) 17/1).
(9) (a) Iwai, T.; Fujihara, T.; Tsuji, Y. Chem. Commun. 2008, 6215. (b) Fristrup,
P.; Kreis, M.; Palmelund, A.; Norrby, P.-O.; Madsen, R. J. Am. Chem.
Soc. 2008, 130, 5206.
(10) Rh-catalyzed annulation of acid chlorides with internal alkynes to give
indenones via migration/reinsertion of CO has been reported. See: Kokubo,
K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1996, 61, 6941.
(11) (a) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2009, 131,
6668. (b) Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao, J.; Tsuji, Y. J. Am.
Chem. Soc. 2010, 132, 2094.
(12) See the Supporting Information for details.
(13) Lemoucheux, L.; Rouden, J.; Ibazizene, M.; Sobrio, F.; Lasne, M.-C. J.
Org. Chem. 2003, 68, 7289.
(14) For oxidative addition of carbamoyl chlorides to palladium, see: Hiwatari,
K.; Kayaki, Y.; Okita, K.; Ukai, T.; Shimizu, I.; Yamamoto, A. Bull. Chem.
Soc. Jpn. 2004, 77, 2237, and references cited therein.
(15) For the synthesis and characterization of arylamide-iridacycle complexes
from amines and CO, see: Rahim, M.; Bushweller, H.; Ahmed, K. J.
Organometallics 1994, 13, 4952.
A plausible reaction mechanism is shown in Scheme 1. Oxidative
addition of 1 to the iridium(I) species (step 1) occurs, generating the
JA104153K
9
J. AM. CHEM. SOC. VOL. 132, NO. 28, 2010 9603