pubs.acs.org/joc
QHBM systems exhibiting high-affinity and high-fidelity.5 The
Room Temperature, Copper-Catalyzed Amination of
Bromonaphthyridines with Aqueous Ammonia
weak self-dimerization of the 2,7-diamido-1,8-naphthyridine
(DAN) unit, i.e., Kdimer > 10 M-1, and its high affinity for
QHBMs, such as UG, DeUG, and UPy, makes this unit
particularly valuable.2b,3-6 Indeed, the DAN motif has been
employed in molecular recognition and self-assembly studies,7
and has found applications in supramolecular polymer
chemistry.8,9 These and future advances depend on the avail-
ability of preparations that allow access to functional derivatives
of DAN. Such functional groups should allow the covalent
attachment of DAN to other molecules, macromolecules, sur-
faces, and nanostructures.
Cyrus A. Anderson, Phillip G. Taylor, Mary A. Zeller,† and
Steven C. Zimmerman*
Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana,
Illinois 61801. †Current address: Department of Chemistry,
Purdue University, 560 Oval Drive, West Lafayette, IN 47907
Functional DAN units have typically incorporated the
reactive functionality in one or both amide side chains. The
naphthyridine ring system can also be functionalized;10 how-
ever, these methods involve either lengthy syntheses or have
not yet been shown to allow attachment to other materials.
The syntheses of nonsymmetric diamidonaphthyridines 1 have
typically involved selective hydrolysis of one amide of diami-
donaphthyridine 2 (Figure 1a).3,6a Compound 2 is prepared via
acylation of 2,7-diaminonaphthyridine, which is in turn obtai-
ned through high-pressure ammonolysis of a chloronaphthyr-
idine precursor.11 The hazardous ammonolysis conditions, or
use of ammonia surrogates,12 combined with the circuitous syn-
thetic sequence have prompted investigations into alternative
routes.3,13 A straightforward approach has been reported by
Sijbesma and Meijer14 wherein chloronaphthyridines 3 undergo
palladium-catalyzed amidation (Figure 1b). Multiple nonsym-
metric diamidonaphthyridines were successfully obtained
in 50-90% yield. Given recent advancements in C-N bond
Received March 15, 2010
Room temperature, copper-catalyzed amination of ami-
do-bromo-1,8-naphthyridines is reported. Use of Cu2O
and aqueous ammonia at ambient temperature affords ami-
nation products in 10-87% yield. Bromonaphthyridines are
prepared in 15-65% yield via treatment of amidonaphthyr-
idinones with phosphorus tribromide. This methodology
provides an alternative route to functional, nonsymmetric
2,7-diamido-1,8-naphthyridines.
(6) (a) Li, X.-Q.; Jiang, X.-K.; Wang, X.-Z.; Li, Z.-T. Tetrahedron 2004,
60, 2063. (b) Ong, H. C.; Zimmerman, S. C. Org. Lett. 2006, 8, 1589.
(c) Kuykendall, D. W.; Anderson, C. A.; Zimmerman, S. C. Org. Lett.
2009, 11, 61.
(7) (a) Wang, X.-Z.; Li, X.-Q.; Shao, X.-B.; Zhao, X.; Deng, P.; Jiang, X.-
K.; Li, Z.-T.; Chen, Y.-Q. Chem.;Eur. J. 2003, 9, 2904. (b) Alvarez-Rua, C.;
Garcıa-Granda, S.; Goswami, S.; Mukherjee, R.; Dey, S.; Claramunt, R. M.;
Santa Marıa, M. D.; Rozas, I.; Jagerovic, N.; Alkorta, I.; Elguero, J. New J.
Within the area of hydrogen bond-mediated self-assembly,1
quadruple hydrogen bonding modules (QHBMs) have proven
particularly useful, especially those that strongly dimerize
(Kdimer > 105 M-1 in CDCl3).2 Such systems are limited with
respect to the complexity of the resulting architectures. Conse-
quently, we3 and others4 have pursued heterocomplementary
€
Chem. 2004, 28, 700. (c) Taubitz, J.; Luning, U.; Grotemeyer, J. Chem.
Commun. 2004, 2400. (d) de Greef, T. F. A.; Ligthart, G. B. W. L.; Lutz, M.;
Spek, A. L.; Meijer, E. W.; Sijbesma, R. P. J. Am. Chem. Soc. 2008, 130, 5479.
(8) For selected reviews on hydrogen-bonded supramolecular polymers,
see: (a) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. Rev. 2001, 30, 83.
(b) Ciferri, A. Macromol. Rapid Commun. 2002, 23, 511. (c) Wilson, A. J. Soft
Matter 2007, 3, 409. (d) Fathalla, M.; Lawrence, C. M.; Zhang, N.; Sessler,
J. L.; Jayawickramarajah, J. Chem. Soc. Rev. 2009, 38, 1608. (e) Fox, J. D.;
Rowan, S. J. Macromolecules 2009, 42, 6823. (f) de Greef, T. F. A.; Smulders,
M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W.
Chem. Rev. 2009, 109, 5687.
(9) For selected examples of supramolecular polymers featuring DAN,
see: (a) Ligthart, G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W.
J. Am. Chem. Soc. 2005, 127, 810. (b) Park, T.; Zimmerman, S. C.;
Nakashima, S. J. Am. Chem. Soc. 2005, 127, 6520. (c) Feldman, K. E.; Kade,
M. J.; de Greef, T. F. A.; Meijer, E. W.; Kramer, E. J.; Hawker, C. J.
Macromolecules 2008, 41, 4694. (d) Yang, S. K.; Ambade, A. V.; Weck, M.
J. Am. Chem. Soc. 2010, 132, 1637.
(1) For selected reviews, see: (a) Krische, J. M.; Lehn, J.-M. Struct.
Bonding (Berlin, Ger.) 2000, 96, 3. (b) Zimmerman, S. C.; Corbin, P. S. Struct.
Bonding (Berlin, Ger.) 2000, 96, 63. (c) Prins, L. J.; Reinhoudt, D. N.;
Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382. (d) Schmuck, C.;
Wienand, W. Angew. Chem., Int. Ed. 2001, 40, 4363. (e) Sijbesma, R. P.;
Meijer, E. W. Chem. Commun. 2003, 5. (f) Hunter, C. A. Angew. Chem., Int.
Ed. 2004, 43, 5310. (g) Sivakova, S.; Rowan, S. J. Chem. Soc. Rev. 2005, 34, 9.
(h) Sessler, J. L.; Lawrence, C. M.; Jayawickramarajah, J. Chem. Soc. Rev.
2007, 36, 314. (i) Schneider, H.-J. Angew. Chem., Int. Ed. 2009, 48, 3924.
(2) (a) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.;
Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W.
Science 1997, 278, 1601. (b) Corbin, P. S.; Zimmerman, S. C. J. Am. Chem.
Soc. 1998, 120, 9710. (c) Lafitte, V. G. H.; Aliev, A. E.; Horton, P. N.;
Hursthouse, M. B.; Bala, K.; Golding, P.; Hailes, H. C. J. Am. Chem. Soc.
2006, 128, 6544. (d) Todd, E. M.; Zimmerman, S. C. J. Am. Chem. Soc. 2007,
129, 14534. (e) Hisamatsu, Y.; Shirai, N.; Ikeda, S.; Odashima, K. Org. Lett.
2009, 11, 4342.
€
€
(10) (a) Luning, U.; Kuhl, C.; Uphoff, A. Eur. J. Org. Chem. 2002, 4063.
(b) Mayer, M. F.; Nakashima, S.; Zimmerman, S. C. Org. Lett. 2005, 7, 3005.
(11) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N. A.;
Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475.
(3) Park, T.; Todd, E. M.; Nakashima, S.; Zimmerman, S. C. J. Am.
Chem. Soc. 2005, 127, 18133.
(12) Park, T.; Mayer, M. F.; Nakashima, S.; Zimmerman, S. C. Synlett
2005, 1435.
(13) Goswami, S.; Mukherjee, R.; Mukherjee, R.; Jana, S.; Maity, A. C.;
Adak, A. K. Molecules 2005, 10, 929.
€
€
(4) (a) Luning, U.; Kuhl, C. Tetrahedron Lett. 1998, 39, 5735. (b) de Greef,
T. F. A.; Ercolani, G.; Ligthart, G. B. W. L.; Meijer, E. W.; Sijbesma, R. P.
J. Am. Chem. Soc. 2008, 130, 13755.
(5) Todd, E. M.; Quinn, J. R.; Park, T.; Zimmerman, S. C. Isr. J. Chem.
2005, 45, 381.
(14) Ligthart, G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W.
J. Org. Chem. 2006, 71, 375.
4848 J. Org. Chem. 2010, 75, 4848–4851
Published on Web 06/15/2010
DOI: 10.1021/jo100476x
r
2010 American Chemical Society