29-ArH), 7.78 (dd, 3J(H,H)1 = 7.9 Hz, 3J(H,H)2 = 1.1 Hz, 1H; 30-
ArH), 7.71 (d, 3J(H,H) = 4.2 Hz, 1H; 14-ArH), 7.51 (t, 3J(H,H) =
7.7 Hz, 1H; 28-ArH), 7.06 (d, 3J(H,H) = 4.2 Hz, 1H; 4-ArH), 6.88
13 W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248, 73–76.
14 L. Moreaux, O. Sandre, M. Blanchard-Desce and J. Mertz, Opt. Lett.,
2000, 25, 3220–3222.
15 P. Yan, A. C. Millard, M. Wei and L. M. Loew, J. Am. Chem. Soc.,
2006, 128(34), 11030–11031.
16 Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H.
Robinson and W. H. Steier, Science, 2000, 288, 119–122.
17 H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C.
Zuccaccia, A. Macchioni, C. L. Stern, Z. F. Liu, S. T. Ho, E. C. Brown,
M. A. Ratner and T. J. Marks, J. Am. Chem. Soc., 2007, 129, 3267–3286.
18 V. Alain, M. Blanchard-Desce, I. Ledoux-Rak and J. Zyss, Chem.
Commun., 2000, 353.
19 B. F. Levine and C. G. Bethea, Appl. Phys. Lett., 1974, 24, 445–447.
20 M. Gonza´lez, J. L. Segura, C. Seoane, N. Mart´ın, J. Gar´ın, J. Orduna,
R. Alcala´, B. Villacampa, V. Herna´ndez and J. T. Lo´pez Navarrete, J.
Org. Chem., 2001, 66, 8872–8882.
3
3
(d, J(H,H) = 15.2 Hz, 1H; 20-ArH), 6.57 (d, J(H,H) = 4.2 Hz,
3
1H; 15-ArH), 5.79 (d, J(H,H) = 4.2 Hz, 1H; 3-ArH), 4.49 (s,
3
3H; 32-CH3), 3.31 (t, J(H,H) = 7.7 Hz, 4H; NCH2), 1.68 (m,
4H; NCH2CH2), 1.42 (m, 4H; NCH2CH2CH2), 1.02 (t, 3J(H,H) =
7.3 Hz, 6H; CH3). 13C-NMR (125 MHz, CDCl3) d = 160.91 (2
CAr), 155.22 (22 CAr), 149.20 (11 CAr), 141.77 (24 CAr), 141.20 (23
CAr), 139.74 (14 CAr), 139.31 (25 CAr), 135.32 (13 CAr), 133.91 (29
CAr), 129.71 (30 CAr), 129.38 (4 CAr), 127.43 (26 CAr), 126.73 (28
CAr), 121.39 (21 CAr), 121.34 (15 CAr), 117.86 (27 CAr), 117.76 (5
CAr), 110.87 (20 CAr), 102.72 (3 CAr), 53.54 (7,16 CH2), 40.41 (32
NCH3), 29.23 (8,17 CH2), 20.24 (9,18 CH2), 13.92 (9,18 CH3).
ESI-MS: m/z (%): 461.3 (100) [M+].
21 I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto
and G. Viscardi, Synth. Met., 2000, 115, 213–217.
22 M. M. M. Raposo and G. Kirsch, Heterocycles, 2001, 55(8), 1487–
1498.
23 M. M. M. Raposo and G. Kirsch, Tetrahedron, 2003, 59, 4891–4899.
24 P. Yan, A. Xie, M. Wie and L. M. Leow, J. Org. Chem., 2008, 73,
6587–6594.
References
1 A. Ballistreri, L. Gregoli, G. Musumarra and A. Spalletti, Tetrahedron,
1998, 54, 9721.
25 A. G. Jiang, Y. G. Liu and D. Y. Huang, THEOCHEM, 2000, 499,
203–206.
2 L. Giglio, U. Mazzucato, G. Musumarra and A. Spalletti, Phys. Chem.
Chem. Phys., 2000, 2, 4005–4012.
3 E. Marri, U. Mazzucato, C. G. Fortuna, G. Musumarra and A.
Spalletti, J. Photochem. Photobiol., A, 2006, 179, 314–316.
4 F. P. Ballistreri, V. Barresi, P. Benedetti, G. Caltabiano, C. G. Fortuna,
M. L. Longo and G. Musumarra, Bioorg. Med. Chem., 2004, 12, 1689–
1695.
5 C. G. Fortuna, V. Barresi, G. Berellini and G. Musumarra, Bioorg. Med.
Chem., 2008, 16, 4150–4159.
6 C. G. Fortuna, V. Barresi, N. Musso and G. Musumarra, Arkivoc, 2009,
(viii), 222–229.
26 A. Carella, A. Castaldo, R. Centore, A. Fort, A. Sirigu and A. Tuzi, J.
Chem. Soc., Perkin Trans. 2, 2002, 1791–1795.
27 P. Yan, A. C. Millard, M. Wei and L. M. Loew, J. Am. Chem. Soc.,
2006, 128, 11030.
28 R. W. Terhune, P. D. Maker and C. M. Savage, Phys. Rev. Lett., 1965,
14, 681–684.
29 K. Clays and A. Persoons, Phys. Rev. Lett., 1991, 66, 2980–2983.
30 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision E.01), Gaussian, Inc., Wallingford, CT, 2004.
31 C. G. Fortuna, V. Barresi and G. Musumarra, Bioorg. Med. Chem.,
2010, 18, 4516–4523.
7 J. Zyss, Molecular Nonlinear Optics: Materials Physics and Devices;
Academic Press: Boston, 1994.
8 Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C.
Zhang and L. R. Dalton, Appl. Phys. Lett., 2000, 77, 1.
9 S-H Jang and A. K-Y Jen, Polymeric Second-Order Nonlinear Optical
Materials and Devices, in Introduction to Organic Electronic and
Optoelectronic Materials and Devices, edited by Sam-Shajing Sun and
Larry R. Dalton, CRC Press, p. 467, 2008.
10 H. S. Nalwa, S. Miyata, Nonlinear Optics of Organic Molecules and
Polymers; CRC Press: New York, 1997.
11 T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays and A. Persoons,
J. Mater. Chem., 1997, 7, 2175.
12 J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O.
Paulsen, K. Clays and H. L. Anderson, J. Am. Chem. Soc., 2009, 131,
2758–2759.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 1608–1613 | 1613
©